

----------TRS-BO ®

A Special Note on Model III Computer Graphics •••

Be sure to use the GCLS command ("clear the Graphics
Screen") at TRSDOS READY when you first turn on your
computer. Otherwise, random graphics may appear on the
Screen.

Thank You

llad18 lllaeK
A DIVISION OF TANDY CORPORATION

FORT WORTH, TEXAS 78102 .

8759223

----------llad1elllaeli----------

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL STORE OR FROM A

RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY
I. CUSTOMER OBLIGATIONS

A. CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the "Equipment"), and any copies of Radio
Shack software included with the Equipment or licensed separately (the "Software") meets the specifications, capacity, capabilities,
versatility, and other requirements of CUSTOMER

B. CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software
are to function, and for its installation.

11. RADIO SHACK LIMITED WARRANTIES ANO CONDITIONS OF SALE

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment, RADIO
SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored Is free from manufacturing
defects. THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS
AUTHORIZED LOCATION. The warranty is void if the Equipment's case or cabinet has been opened, or if the Equipment or Software has been
subjected to improper or abnormal use. If a manufacturing defect is discovered dunng the stated warranty period, the defective Equipment
must be returned to a Radio Shack Computer Center, a Radio Shack retail store. participating Radio Shack franchisee or Radio Shack dealer
for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and exclusive remedy in the event of
a defect is limited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and sole
expense RADIO SHACK has no obligation to replace or repair expendable items

B RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this
paragraph. Software is licensed on an "AS IS" basis, without warranty The original CUSTOMER'S exclusive remedy, in the event of a
Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,
participating Radio Shack franchisee or Radio Shack dealer along with the sales document

C Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf
of RADIO SHACK.

D Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER

Ill. LIMITATION OF LIABILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
"EQUIPMENT" OR "SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE "EQUIPMENT" OR "SOFTWARE" IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT" OR "SOFTWARE"

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" OR "SOFTWARE"
INVOLVED.

B. RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or Software.
C No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years

after the cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or
Software, whichever first occurs.

D. Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion(s) may
not apply to CUSTOMER.

IV. RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on one computer, sub1ect to the following
provisions:
A Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.
B. Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to

the Software
C. CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this

function.
D CUSTOMER shall not use. make, manufacture, or reproduce copies of Software except for use on one computer and as is specifically

provided in this Software License. Customer is expressly prohibited from disassembling the Software.
E. CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or 1f additional copies are required In

the operation of one computer with the Software, but only to the extent the Software allows a backup copy to be made. However, for
TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each
one sold or distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from
CUSTOMER. .

G. All copyright notices shall be retained on all copies of the Software.

V. APPLICABILITY OF WARRANTY

A The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and:or
Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to
CUSTOMER

B The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author. owner andior licensor of the
Software and any manufacturer of the Equipment sold by RADIO SHACK

VI. STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may have other rights which vary
from state to state.

Computer Graphics Operation Manual
-----------TRS-B0 ® ----------

TRS-8J• Computer Graphics Operation Manual Copyright
1982, All Rights Reserved, Tandy Corporation.

Reproduction or use without express written permission from
Tandy Corporation, of any portion of this manual is
prohibited. While reasonable efforts have been taken in the
preparation of this manual to assure its accuracy, Tandy
Corporation assumes no liability resulting from any errors
or omissions in this manual, or from the use of the
information obtained herein.

TRsoos• Operating System Copyright 198~, 1981, Tandy
Corporation, All Rights Reserved.

BASIC Software Copyright 198~, Microsoft, Inc., All Rights
Reserved, Licensed to Tandy Corporation.

BASICG Software Copyright 1982, Microsoft, Inc., All
Rights Reserved, Licensed to Tandy Corporation.

----------IIM11elllaell----------

-2-

Computer Graphics Operation Manual
-----------TRS-B0 ® -----------

Contents

To Our Cus tamers. 4

1/ Computer Graphics Overview •..•.••••..••••.••••.•.•••.• 7

2/ Graphics
BASICG

BASIC (BASICG) ••...••••....••••••.•••••••••. 12
Comm.ands • •••••••••••••••••••••••••••••••••••

Starting-Up
13
14

3/ Graphics Utilities •...•••••.••••••••.•••••••••.•••••. 59

4/ Graphics Subroutine Library (FORTRAN) •••••••••••••..• 91

5/ Programming the Graphics Board ••.••••...•..•.••••.•• 114

Appendix A/ BASICG/Utilities Reference Summary ••••••••• 117

Appendix B/ BASICG Error Messages ••..••••.•••••.•.••.•• 12~

Appendix C/ Subroutine Language Reference Summary •.•••. 125

Appendix D/ Sample Programs
BAS ICG. • • • • • . • • . . • . . • • • • • . • • • • • • . • • • 12 7
Printing Graphics Displays ••.•..•...•••••••..•.••• 133
FORTRAN Sample Programs •..•••••...••••••••..••••.• 135

Appendix E/ Base Conversion Chart ••.••••.•.•.••.•••..•• 152

Appendix F/ Pixel Grid Reference •.••••••.•.•••.•.•••.•• 156

Appendix G/ Line Style Reference ..•.•••.•••••...•••..•. 162

Index. 16 3

---------- llad1elhaeli----------

-3-

Computer Graphics Operation Manual

-----------TRS-80 ® ----------

To Our Customers •••

The TRS-8~® Computer Graphics package revolutionizes your
Model III by letting you draw intricate displays from simple
program instructions. With the highly-defined Graphics
Screen, the list of practical applications is nearly
endless!

The TRS-8~ Computer Graphics package includes a:

Computer Graphics Diskette
Computer Graphics Operation Manual

However, before you can use this package, your Model III
must have 48K of RAM (Random Access Memory) and one disk
drive. Your computer must also be modified by a qualified
Radio Shack service technician. The only difference you'll
notice is a cable which protrudes from the bottom of the
Model III case. Do not attempt to disconnect this cable!
This cable is provided to allow you to attach peripheral
devices (such as a hard disk) to the I/O Bus Jack of the
Model III. The cable connector which is attached directly to
the I/O Bus Jack (see Point A in the figure below) must be
firmly attached for the Computer Graphics package to work.

Included on the Graphics diskette are:

TRSDOS 1.3
Disk BASIC
Graphics BASIC (BASICG)
Graphics Subroutine Library (GRPLIB)

---------1tad1elhaell---------

-4-

Computer Graphics
----------TRS-BO ®

Graphics Utilities
Sample Programs in BASICG and FORTRAN.

Operation Manual

To print graphic displays, you can use any Radio Shack
printer that has graphic capabilities such as Line Printer
VII (26-1167), Line Printer VIII (26-1168), DMP-1~~
(26-1253), DMP-2~~ (26-1254), DMP-4~~ (26-1251), or DMP-5~~
(26-1252).

You can also utilize the Graphics Subroutine Library with
several languages, including, but not limited to FORTRAN
(26-22~~).

About This Manual ••.

For your convenience, we've divided this manual into five
sections plus appendixes:

Computer Graphics Overview
Graphics BASIC (BASICG) Language Description
Graphics Utilities
FORTRAN Description
Programming the Graphics Board
Appendixes

This package contains two separate (but similar) methods for
Graphics programming:

Graphics BASIC (BASICG)
Graphics Subroutine Library

If you're familiar with Model III TRSDOS 9 and BASIC, you
should have little trouble in adapting to Graphics BASIC.
If you want to review BASIC statements and syntax, see your
Model III Operation and BASIC Language Reference Manual
and Model III Disk System Owner's Manual. Then read
Chapters 1, 2 and 3, along with Appendixes A, B, E, and F of
this manual.

If it's Graphics applications in FORTRAN you're after, refer
to the TRS-8~ FORTRAN manual. Then read Chapters 1, 2, 3,
and 4 as well as Appendixes C, D, E, and F of this manual.

Note: This manual is written as a reference manual for the
TRS-8i Computer Graphics package. It is not intended as a
teaching guide for graphics programming.

----------1tad1elhaeli----------

-5-

Computer Graphics Operation Manual
-----------TRS-80 ® ----------

Notational Conventions

The following conventions are used to show syntax in this
manual:

CAPITALS

lowercase underline

<ENTER>

. . .

filespec

punctuation

delimiters

Any words or characters which
are uppercase must be typed in
exactly as they appear.

Fields shown in lowercase
underline are variable
information that you must
substitute a value for.

Any word or character contained
within brackets represents a
keyboard key to be pressed.

Ellipses indicate that a field
entry may be repeated.

A field shown as filespec
indicates a standard TRSDOS
file specification of the form:
filename/ext.password:d
Note that with TRSDOS 1.3, d
(Drive) can be any number
from ~-3.

Punctuation other than ellipses
must be entered as shown.

Commands must be separated from
their operands by one or more
blank spaces. Multiple
operands, where allowed, may be
separated from each other by a
comma, a comma followed by one
or more blanks, or by one or
more blanks. Blanks and commas
may not appear within an
operand.

----------lcH11elhaeli----------
-6-

Computer Graphics
----------TRS·BO ®

Operation Manual

1/ Computer Graphics Overview

Graphics is the presentation of dimensional artwork. With
TRS-8~ Computer Graphics, the artwork is displayed on a
two-dimensional plane -- your computer screen. Like an
artist's easel or a teacher's blackboard, the screen is a
"drawing board" for your displays.

TRS-8~ Computer Graphics has two colors:

Black (OFF)
White (ON)

Graphics programming is different from other types of
programming because your ultimate result is a pictorial
display (bar graph, pie chart, etc.) rather than textual
display ·(sum, equation, etc.). This is an important
distinction. After working with graphics for a while, you'll
find yourself thinking "visually" as you write programs.

In computer-generated graphics, displays can include tables,
charts, graphs, illustrations and other types of artwork.
Once they're created, you can "paint" displays with a
variety of styles and shapes, or even simulate animation.

The Computer Graphics program uses a "high-resolution"
screen. The more addressable points or dots (called
"pixels") on a computer's screen, the higher the resolution.
A lower resolution screen has fewer addressable pixels.

----------lladaelllaeli----------

-7-

Computer Graphics
-----------TRS-BO ®

PIXEL

Lower resolution

Operation Manual

~

Higher resolution

Figure 1. Resolution

Since the TRS-8~ has high-resolution -- 64~ pixels on the
X-axis (~ to 639) and 24~ pixels on the Y-axis (~ to 239)
you can draw displays that have excellent clarity and
detail.

How TRS-81 Computer Graphics Works

The concept of graphics is fairly simple. Each point on the
screen can be turned ON (white) or OFF (black).

When you clear the Graphics Screen, all graphic points are
turned OFF.

Therefore, by setting various combinations of the pixels
(usually with a single command) either ON or OFF, you can
generate lines, circles, geometric figures, pictures, etc.

The Graphics Subroutine Library, which is part of the
Computer Graphics package, contains subroutines which
provide the same capabilities, as well as similar names and
parameters, as the commands and functions in Graphics BASIC.
The main difference between the Subroutine Library and
BASICG is the manner in which coordinates are specified
(e.g., BASICG coordinates are specified as arguments for
each command while the Subroutine Library specifies
coordinates with a separate subroutine call). Another
difference concerns the names of a few routines (e.g., LINE
vs. LINEB vs. LINEBF, etc.). All of these differences will

--------- llad1elhaell---------

-8-

Computer Graphics
----------TRS-BO ®

Operation Manual

be described in detail in the appropriate sections of this
manual.

The Graphics Screen

TRS-8~ Computer Graphics has two "screens" -- Text and
Graphics. (We'll call them screens, although they are really
modes.) Both screens can act independently of each other and
make use of the computer's entire display area.

The Text Screen, also referred to as the "Video Display," is
the "normal" screen where you type in your programs. The
Graphics Screen is where graphic results are displayed. Both
screens can be cleared independently. Note: The Graphics
Screen will not automatically be cleared when you return to
TRSDOS. It will be cleared when you re-enter BASICG.

The Graphics Screen cannot be displayed at the same time as
the Text Screen.

While working with Computer Graphics, it might be helpful to
imagine the screen as a large Cartesian coordinate plane
(with a horizontal X- and a vertical Y-axis). However,
unlike some coordinate systems, TRS-8~ Computer Graphics'
coordinate numbering starts in the upper-left corner
(~,~) -- and increases toward the lower-right corner
(639,239). The lower-left corner is (~,239) and the
upper-right corner is (639,~).

Since the screen is divided into X-Y coordinates (like the
Cartesian system), each pixel is defined as a unique
position. In TRS-8~ Computer Graphics, you can directly
reference these coordinates as you draw.

About Ranges .••

Some TRS-8~ Computer Graphics commands accept values within
the Model III integer range (-32768 to 32767), instead of
just~ to 639 for X and~ to 239 for Y. Since most of the
points in the integer range are off the screen, these points
are part of what is called Graphics "imaginary" Cartesian
system.

-----------1tad1elhaeli----------

-9-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

(0,0) (639,0)

(0,239) (639,239)

Figure 2. Graphics Visible Screen

-----------1tad1elhaeli----------

-1~-

Computer Graphics Operation Manual
----------TRS-BO ® ----------

y (0, - 32768)

(-,-) (+,-)

X (- 32768,0) --------(0,0) -------- (+32767 ,0)

(-,+) (+,+)

(0, 32767)

Figure 3. Graphics "Imaginary• Cartesian System

----------- ltaf.lNtlllaeli----------

-11-

Computer Graphics Operation Manual
-----------TRS-80 ® ----------

2/ Graphics BASIC

Graphics BASIC (BASICG) vs. BASIC

The Graphics BASIC file on the supplied diskette is named
BASICG.

Program files created under BASICG are not directly loadable
with BASIC files (and vice versa). If you attempt to load a
BASIC file in compressed format from BASICG (and vice
versa), an NB error may occur. See Appendix B for a list of
BASICG error messages.

If you want to load a file from one BASIC to the other to
the other, we recommend that you first save the file in
ASCII format (SAVE"filenarne/ext",A).

You can then load and run a BASIC file from either BASICG or
BASIC. You cannot run programs that contain BASICG
statements while in BASIC.

Important Note: Because of memory limitations, some programs
(i.e., some application programs) will not run in BASICG.
BASICG uses approximately 6.5K more memory than BASIC. When
you enter BASIC with~ files, there are 39,282 bytes free.
When you enter BASICG with~ files, there are 32,675 bytes
free. Some Graphics Commands use Free Memory. This means
that the larger your BASIC programs are, the more
limitations on your Graphics capabilities.

Each Graphics program statement has a specific syntax and
incorporates a Graphics BASIC command or function.

Table 1 gives a brief description of the BASICG commands; Table 2
lists the BASICG functions. This section of the manual will
describe each statement and function in detail.

---------- rtadNtlllaell----------

-12-

Computer Graphics
-----------TRS-BO ®

Operation Manual

==

Command

CIRCLE

GLOCATE

LINE

PRESET

PSET

SCREEN

BASICG Commands

Description

Draws a circle, arc, semicircle, etc.

Sets the Graphics Cursor and the direction
for putting characters on the Graphics
Screen.

Draws a line from the startpoint to the
endpoint in the specified line style and
color. Also creates a box.

Sets an individual dot (pixel) OFF (or
ON).

Sets an individual dot (pixel) ON (or
OFF).

Selects the Graphics or Text Screen.

Table 1

---------1tad1olhaeli---------

-13-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

---------------===-=-=======================================
BASICG Functions

----==
Function

&POINT

Starting-Up

Description

Returns the OFF/ON color value of a
pixel.

Table 2

Before using the diskette included with this package, be
sure to make a "safe copy" of it. See your Model III Disk
System Owner's Manual for information on BACKUP.

To load BASICG:

1. Power up your System according to the start-up procedure
in your Model III Disk System Owner's Manual.

2. Insert the backup diskette into Drive~-

3. Initialize the System as described in the "Operation"
section of the Model III Disk System Owner's Manual.

4. When TRSDOS Ready appears, type:

BASICG <ENTER>

The Graphics BASIC start-up prompts, followed by the READY
prompt(>), appear and you are in Graphics BASIC. You can
now begin BASICG programming.

---------- llad1elhaell----------

-14-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

Remember that Model III numeric values are as follows:

==----
Model III Numeric Values

===---
Numeric
Type

Integer

Double
Precision

Range
Storage
Requirement Example

-32768, 32767 2 bytes

-1*1.0 38 ,-1*1,0-38 8 bytes
+1*1.038,+l*l,0-38
Up to 17 significant
digits (Prints 16)

24.0, 639, -1.0

123.0.0.0.0 .,0,0
3.1415926535897932

===-----
Table 3

With each BASICG command or function, there are various
.~ options which you may or may not include in a program

statement (depending on your needs). Each option is
separated from the previous option by a delimiter, usually a
comma. When you do not specify an available option (e.g.,
you use the default value) and you specify subsequent
options, you must still enter the delimiter or a Syntax
Error will result. (See your Model III Operation and BASIC
Language Reference Manual for more information).

Because you are dealing with two distinct screens, the
Graphics Screen and the Text Screen, we strongly urge you to
read the description of the SCREEN command before
continuing.

----------ltadlOlhaeli----------

-15-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

CIRCLE
Draws Circle, Semicircle, Ellipse, Arc, Point

The CIRCLE command lets you draw five types of figures:

V •

Circle Ellipse Arc Pie-Slice Point

Figure 4. Types of Displays with CIRCLE

With CIRCLE, you can enter values for PI (and 2 x PI) up to
37 significant digits without getting an overflow error.

3.1415926535897932384626433832795i20841
6.2031as3i11795864769252867665s9iis1Ga2

----------nad1elhaell---------

-16-

Computer Graphics Operation Manual
-----------TRS-80 ® ----------

However, you'll probably only be able to visually detect a
change in the circle's start and end when PI is accurate
to a few significant digits Ce.g.~.l, 6.28, etc.). The
start and end values can't be more than 2 x PI (e.g.,
6.2832 will not work) or an Illegal Function Call error will
occur.

(~)
Centerpoint

The (~) coordinates in the CIRCLE statement specify the
centerpoint of the figure. ~ and y are numeric
expressions in the integer number range.

Example

r
Radius

CIRCLE (~) ,!_

CIRCLE (32~,12~),!_

Center

Figure 5. Center of Circle

The radius of a circle is measured in pixels and is a
numeric expression in the integer range. Radius is the
distance from the centerpoint to the edge of the figure.
Although a negative value will be accepted by BASICG, the
results of using a negative value are unpredictable.

The radius is either on the X-axis or Y-axis, depending on
the aspect ratio (see ar). If the aspect ratio is greater
than 1, the radius is measured on the Y-axis. If the aspect
ratio is less than or equal to 1, the radius is measured on
the X-axis.

----------lladaelllaell----------

-17-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

Example

lJ CIRCLE(32J,12J),1JJ

This example draws a circle. The radius is lJJ and the
centerpoint is (32J,12J).

C
Color

You can set the ON/OFF (white/black) color of a figure's
border and radius lines (see start/end) by specifying a
numeric value of 1 or J.

If you omit color, BASICG uses 1 (ON/white).

Border

Figure 6. Border of Circle

start/end
Startpoint/Endpoint of Circle

The range for start and end is J to 6.283185 (2 x PI).

If you do not enter start and end, the default values of
J and 6.28 respectively, are used.

A negative start or end value will cause the respective
radius to be drawn inaddition to the arc (i.e., it will
draw a "piece of the pie"). The actual start and endpoints
are determined by taking the absolute value of the specified
start and endpoints. These values are measured in radians.

Note: Radius will not be drawn if start or end is -J.
To draw a radius with start or end as J, you must use
-JLJJJ ... Jl.

----------llad1olhaell----------

-18-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

12:00

½*1T

9:00 1T 21T 3:00

1½*1T

6:00

Figure 7. Clock/Radian Equivalents

Degrees Radians Clock Equivalent

0 0 3:00
90 1.57 12:00

180 3.14 9.00
270 4.71 6:00
360 6.28 3:00

Table 4. Degree/Radians/Clock Equivalents

You can draw semicircles and arcs by varying start and
end. If start and end are the same, a point (one
pixel) will be displayed instead of a circle.

end

start

Center

Figure 8. CIRCLE'S (-) start, (-) end

----------1tad1elhaell----------

-19-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

You can have a positive start and a negative end (or
vice versa) as well as negative starts and ends. In
these cases, only one radius line is drawn.--

Center

Figure 9. CIRCLE'S (+) start, (-) end

Hints and Tips about start and end:

ar

When using the default values for start and end,
you must use commas as delimiters if you wish to add
more parameters.
If you use PI, it is not a reserved word in BASICG and
must be defined in your program.

Aspect Ratio

You can draw ellipses by varying the aspect ratio from the
default value (.5) for a circle (and semicircle).

Every ellipse has a "major axis" which is the ellipse's
longer, predominant axis. With an ellipse (as with a
circle), the two axes are at right angles to each other.

The mathematical equation for determining the aspect ratio
is:

ar = length of Y-axis/length of x-axis

If the aspect ratio is .5, a circle is drawn.
If the ratio is less than .5, an ellipse with a major
axis on the X-axis is drawn.
If the ratio is greater than .5, an ~llipse with a major
axis on the Y-axis is drawn.

----------lad1elllaeli----------
-20-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

V
V

X-Axls Ellipse (ar < .5) V-Axis Ellipse (ar > .5)

Figure 1#. CIRCLE'S Ellipse

The range for aspect ratio is a single-precisio~
8 floating-point number greater than•·• (to l*l').

Although a negative value will be accepted by BASICG, the
results of using a negative value are unpredictable.

Hints and Tips about aspect ratio:

• Entering .s as the ratio produces a circle •
Numbers between I and .S produce an ellipse with a
major axis on X.
Numbers over .S generate an ellipse with a major axis
on Y.
Even though you can enter large aspect ratios, large
numbers may produce straight lines.

Examples

CIRCLE (32J,12J),9J,l

This exa~ple draws a white-bordered circle with the
centerpo1nt of (32,,12~) and radius of 9J.

CIRCLE (32J,12J),9J,1,,,.7

This statement draws a white-bordered ellipse with an origin
of (32J,12J) and radius of 9J. The major axis is the
Y-axis.

---------- lladaelhaeli----------

-21-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

CIRCLE (32~,12~),9~,1,-6.2,-5

This statement draws an arc with a vertex ("origin") of
(32~,12~) and radius of 9~. start is 6.2 and end is 5.
Radius lines are drawn for start and end.

CIRCLE (32~ 1 12~),9~,l,,-4

This example draws an arc with a vertex of (32~,12~) and
radius of 9i. start is g and end is 4. A radius line is
drawn for end.

li PI=3.1415926
2i CIRCLE (32~ 1 12~),l~i,l,PI,2*PI,.5

A semicircle is drawn.

li CIRCLE (15i,lii>,lii,l,-5,-l
2i CIRCLE (22~,l~i),l~~,l,5,l

Two arcs are drawn with the same start and end point.
The arc with the negative start and end has two radius
lines drawn to the vertex. The arc with a positive start
and end has no radius lines.

CIRCLE (32i,12i),14~,,-4,6.l

This statement draws an arc with a vertex at (32~,12~) and a
radius of 14~. Start is 4 and end is 6.1. A radius line
is drawn for start.

CIRCLE (32~,12~),14~,l,~,l,.5

This example draws an arc with a vertex of (32~,12~) and
radius of 14~.

Sample Program

----------1tat11elhaell----------

-22-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

4 SCREEN~
5 CLR
1~ FOR X=l~ TO 2~~ STEP 1~
2~ CIRCLE (3~~,l~~),X,1,,,.9
3~ NEXT X
4~ FOR Y=l~ TO 2~~ STEP 1~
5~ CIRCLE (3~~,l~~),Y,1,,,.1
6~ NEXT Y
7~ FOR Z=l~ TO 2~~ STEP 1~
8~ CIRCLE (3~~,l~~),Z,1,,,.5
9~ NEXT Z
l~~ GOTO 5

A set of 2~ concentric ellipses is drawn with a major axis
on Y, a set of 2~ concentric ellipses is drawn with a major
axis on X, and a set of 2~ concentric circles is drawn. The
ellipses and circles in each of the three groups are
concentric and the radius varies from 1~ to 2~~-

CLR
Clears the Graphics Screen

CLR clears the Graphics Screen.

Example

1~ SCREEN~
2~ CIRCLE(32~ 1 12~),l~~,l

This program line will draw a circle. Now type:

CLR <ENTER>

and the Graphics Screen will be cleared but the Text Screen
will remain unchanged. This can be seen by typing:

SCREEN 1

---------- llad1elllaell----------

-23-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

GET
Reads the Contents of Rectangular Pixel Area into Array

Important Note: BASICG recognizes two syntaxes of the
command GET -- the syntax described in this manual and the
syntax described in the Model III Operation and BASIC
Language Reference Manual. BASIC recognizes only the GET
syntax described in the Model III Operation and BASIC
Language Reference Manual.

GET reads the graphic contents of a rectangular pixel area
into a storage array for future use by PUT (see PUT).

A rectangular pixel area is a group of pixels which are
defined by the diagonal line coordinates in the GET
statement.

The first two bytes of array name are set to the
horizontal (X-axis) number of pixels in the pixel area; the
second two bytes are set to the vertical (Y-axis) number of
pixels in the pixel area. The remainder of array name
represents the status of each pixel, either ON or OFF, in
the pixel area. The data is stored in a row-by-row format.
The data is stored 8 pixels per byte and each row starts on
a byte boundary.

Array Limits

When the array is created, BASICG reserves space in memory
for each element of the array. The size of the array is
limited by the amount of memory available for use by your

----------- llad1elllaeli-----------

-24-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

program -- each real number in your storage array uses four
memory locations (bytes).

The array must be large enough to hold your graphic display
and the rectangular area must include all the points you
want to store.

Your GET rectangular pixel area can include the entire
screen (i.e., GET(~,~)-(639,239),array name), if the array
is dimensioned large enough.

To determine the minimum array size:

1. Divide the number of x-axis pixels by 8 and round up to
the next higher integer.

2. Multiply the result by the number of Y-axis pixels.
When counting the X-Y axis pixels, be sure to include the
first and last pixel.

3. Add four to the total.

4. Divide by four (for real numbers) or two (for integers)
rounding up to the next higher integer.

The size of the rectangular pixel area is determined by the
<.!LY> coordinates used in GET:

Position:

Size (in pixels):

Example

upper-left corner
lower-left corner

width
length =

= x2-xl+l
y2-yl+l

= startpoint = (xl,yl)
= endpoint = (x2,y2)

This block is 71 pixels wide on the x-axis c1i through 8i>
and 41 long on the Y-axis c1i through si>.

For real: 71/8 = 9 * 41 = 369 + 4 = 373/4 = 94
For integer: 71/8 = 9 * 41 = 369 + 4 = 373/2 = 187

Depending on the type of array you use, you could set up
your minimum-size dimension statement this way:

Real DIM V(93)

---------- llad1elhaeli----------

-25-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

or
Integer DIM V% (186)

Examples

1,0 DIM V(249)
2,0 CIRCLE (65,45),2,0,1
3,0 GET (1,0,1,0)-(12,0,8,0),V

An array is created, a circle is drawn and stored in the
array via the GET statement's rectangular pixel area's
parameters (i.e. , Cl,0, 1.0)- Cl 2,0, 8,0)) •

Calculate the dimensions of the array this way:

Rectangular pixel area is 111 x 71. That equals:

111/8= 14 * 71 =994 + 4 = 998/4 = 25,0

(10, 10) ..----------------, (120, 10)

Rectangular
Pixel

(65,45)

• Area

(10,80)

Figure 11

1,0 DIM V(3,0,3,0)
2,0 CIRCLE (5,0,5,0),1,0
3,0 GET (1,0,1,0)-(8,0,8,0),V

(120,80)

A two-dimensional array is created, a circle is drawn and
stored in the array via the GET statement's rectangular
pixel area's parameters (i.e., (1,0,1,0)-(8,0,8,0)).

----------llad1elhaell----------

-26-

Computer Graphics
----------TRS-80 ®

(10,10)

Rectangular
Pixel -Area

1~ DIM V%(564)

Figure 12

2~ CIRCLE (65,45),5~,1,1,3
3~ GET(l~,l~)-(12~,8~),V%

Operation Manual

(80,80)

A one-dimensional integer array is created, an arc is drawn
and stored in the array via the GET statement's rectangular
area's parameters.

GLOCATE
Sets the Graphics Cursor

Since the Text Screen and the Graphics Screen cannot be
displayed at the same time, you need an easy way to display
textual data on the Graphics Screen. GLOCATE provides part
of this function by allowing you to specify where on the
Graphics Screen to start displaying the data, (~), and
which direction to display it -- direction.

----------lladaolllaell----------

-27-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

The allowable values for direction are:

~ - zero degree angle
1 - 9~ degree angle
2 - 18~ degree angle
3 - 27~ degree angle

Examples

This program line will cause characters to be displayed
starting in the center of the screen in normal left-to-right
orientation.

This program line will cause characters to be displayed
starting in the center of the top portion of the screen in a
vertical orientation, going from the top of the screen to
the bottom of the screen.

This program line will cause characters to be displayed
upside down starting at the right of the screen and going
towards the left.

3~~ GLOCATE (32~ 1 23~),3

This program line will cause the characters to be displayed
vertically, starting at the center of the lower portion of
the screen going towards the top of the screen.

----------llatt1elllaeli-------~--

-28-

Computer Graphics Operation Manual
----------TRS-BO ® ----------

LINE
Draws a Line or Box

LINE draws a line from the starting point (xl,yl) to the
ending point (x2,y2).

If the starting point is omitted, either (~,~) is used if a
previous end coordinate has not been specified or the last
ending point of the previous command is used. If one or both
parameters are off the screen, only the part of the line
which is visible is displayed.

With over 65,5~~ line styles possible, each style is
slightly different. You'll find it's almost impossible to
detect some of the differences since they are so minute.

LINE with Box Option

The start and end coordinates are the diagonal
coordinates of the box (either a square or rectangle). When
you don't specify the B or BF options, the "diagonal"
line is drawn. When you specify the B option, the
perimeter is drawn but not the diagonal line. When you
specify the BF option, the perimeter is drawn, and the

-----------lladlOlllaeli----------

-29-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

area bounded by the perimeter is shaded in the specified
color (c).

style

LINE(l4~,8~)-(5ii,2~~),l,B

(140,80) -----------

Figure 13 (500,200)

style sets the pixel arrangement in 16-bit groups.

For example,~~~~ 1111 ~~~i 1111 (binary), ~F~F (hex), or
3855 (decimal).

style can be any number in the integer range (negative or
positive). Using hexadecimal numbers, you can figure the
exact line style you want. There will always be four numbers
in the hexadecimal constant.

To use hexadecimal numbers for style:

1. Decide what pixels you want OFF (bit=~) and ON (bit=l).

2. Choose the respective hexadecimal numbers (from the Base
Conversion Chart, Appendix E).

Example

Creates a dashed line.

----------1tafl1elhaell----------

-3~-

-~

Computer Graphics Operation Manual
-----------TRS-80 ® ----------

==---
Type

Long dash

Medium dots

Examples

Binary Numbers

.0.0.0.0 .0.0.0.0 1111 1111

Table 5. Sample Line Styles

LINE - (1,0,0, 4,0)

Hex Numbers

&H,0,0FF

This example draws a line in white (ON) starting at the last
endpoint used and ending at Cl.0.0,4,0).

LINE (,0,,0)-(319,199)

This statement draws a white line starting at <.0,.0> and
ending at (319,199).

LINE(l,0,0,1,0,0)-(2,0,0,2,0,0),1,,45

This example draws a line from (1,0,0,1.0.0> to (2.0.0,2.0.0> using
line style 45 (&H,0,02D).

LINE (l,0,0,l,0,0)-(3,0,0,2,0,0),l,,&H,0,0FF

This LINE statement draws a line with "long dashes." Each
dash is eight pixels long and there are eight blank pixels
between each dash.

----------llad1elhaeli----------

-31-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

LINE c1gg,1g~)-(3gg,2g~),l,,-lggg

This statement draws a line from c1gg,1gg) to c3gg,2gg)
using line style -1ggg.

A line is drawn from the startpoint of c2gg,2gg) to
(-l~~,1gg).

1g LINE (3g,3g)-(l8g,12g)
2g LINE -(12~ 1 18g)
3g LINE -(3g,3g)

This program draws a triangle.

1g LINE -csg,sg)
2~ LINE -c12g,sg)
3g LINE -(-l~g,-1gg)
4g LINE -(3gg~,1ggg)

This program draws four line segments using each endpoint as
the startpoint for the next segment.

-----------llad1elllaeli----------
-32-

~\

Computer Graphics Operation Manual

-----------TRS-BO ® ----------

PAINT
Paints Screen

PAINT shades the Graphics Screen with tiling starting at
the specified X-Y coordinates, proceeding upward and
downward.

~,y
Paint Startpoint

~,y is the coordinate where painting is to begin and
must:

Be inside the area to be painted.
Be on the working area of the screen.

For example:

1~ CIRCLE(32~,12~),8~
2~ PAINT(32~,12~),1,1

A circle with a centerpoint of (32~,12~) is drawn and
painted in white.

----------1tad1elhaell----------

-33-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

tiling
Paint Style

tiling is the pattern in a graphics display. By specifying
each pixel, you can produce a multitude of tiling styles
thereby simulating different shades of paint on the screen.

tiling is convenient to use in bar graphs, pie charts,
etc., or whenever you want to shade with a defined pattern.

There are two types of tiling:

•
Numeric expressions
Strings

Numeric Expressions. There are only two numeric
expressions that can be used for the paint style -- ~ and 1.
1 paints all pixels ON (solid white) and~ paints all pixels
OFF (solid black).

To use numeric expressions, enter either a~ or 1. For
example:

PAINT (32~,12~),l,l

Strings (Point-by-Point Painting). You can paint precise
patterns using strings by defining a multi-pixel grid,
pixel-by-pixel, on your screen as one contiguous pattern.

String painting is called "pixel" painting because you are
literally painting the screen "pixel-by-pixel" in a
predetermined order.

You can define the tile length as being one to 64 vertical
tiles, depending on how long you want your pattern. Tile
width, however, is always eight horizontal pixels (8 pixels
representing one 8-bit byte). The dimensions of a tile
pattern are length by width. Tile patterns are repeated as
necessary to paint to the specified borders. Because of its
symmetry, you'll probably find equilateral pixel grids most
convenient.

----------lladaelhaeli----------
-34-

··~

Operation Manual Computer Graphics
-----------TRS-B0 ® ----------

Figure 14. Example of an 8-by-8 Pixel Grid

Strings allow numerous graphic variations because of the
many pixel combinations you can define.

Important Note: You cannot use more than two consecutive
rows of tiles which match the background or an Illegal
Function Call error will occur. For example:

PAINT (l,l),CHR$(&HFF)+CHR$(&HFF)+CHR$(&H~~)+CHR$(&H~~)
+CHR$(&H~~)+CHR$(&H~~),l,CHR$(&H~~)

returns an Illegal Function Call error.

Using Tiling

You may want to use a sheet of graph paper to draw a style
pattern. This way, you'll be able to visualize the pattern
and calculate the binary and hexadecimal numbers needed.

Note: Tiling should only be done on either a totally black
or white background; otherwise, results are unpredictable.

To draw an example of a tile on paper:

1. Take a sheet of paper and draw a grid according to the
size you want (8 x 8, 24 x 8, etc.). Each boxed area
on this grid, hypothetically, represents one pixel on
your screen.

2. Decide what type of pattern you want (zigzag, diagonal
lines, perpendicular lines, etc.).

3. Fill in each grid in each 8-pixel-wide row of the tile
if you want that pixel to be ON, according to your
pattern. If you want the pixel to be OFF, leave the

---------1tad1elhaell---------

-35-

Computer Graphics
-----------TRS-BO ®

Operation Manual

grid representing the pixel blank.

4. On your paper grid, count each ON pixel as 1 and each
OFF pixel as i. List the binary numbers for each row
to the side of the grid. For example, you might have
iii1 1iii on the first row, i111 ii11 on the second
row, etc.

5. Using a hexadecimal conversion chart, convert the
binary numbers to hexadecimal numbers. (Each row
equates to a two-digit hexadecimal number.)

6. Insert the hexadecimal numbers in a tile string and
enter the string in your program.

Note: For a listing of commonly used tiling styles, see
Appendix F.

Example

For example, if you're working on an 8 x 8 grid and want to
draw a plus ("+") sign:

----------llad1elhaell----------

-36-

Computer Graphics Operation Manual
-----------TRS-B0 ® ----------

8 x 8 grid Binary Hex

~ ~ ~ 1 1 ~ ~ ~ ~~~l l~~~

~ ~ ~ 1 1 ~ ~ ~ ~~~l l~~~

~ ~ ~ 1 1 ~ ~ ~ ~~~l l~~~

1 1 1 1 1 1 1 1 1111 1111

1 1 1 1 1 1 1 1 1111 1111

~ ~ ~ 1 1 ~ ~ ~ ~~~l l~~~

~ ~ ~ 1 1 ~ ~ ~ ~~~l l~~~

~ ~ ~ 1 1 ~ ~ ~ ~~~l l~~~

Figure 15

Tile string:
A$=CHR$(&Hl8)+CHR$(&Hl8)+CHR$(&Hl8)+CHR$(&HFF)+CHR$(&HFF)

+CHR$(&Hl8)+CHR$(&Hl8)+CHR$(&Hl8)

b
Border

18

18

18

FF

FF

18

18

18

Border is the OFF/ON color of the border of a graphics
design where painting is to stop and is a numeric expression
of either~ or 1. If omitted, 1 (ON) is used and all the
pixels on the border are set (solid white).

background
Background Area

Background is a 1-byte character which describes the
background of the area you are painting. CHR$(&H~~)
specifies a black background and CHR$(&HFF) is a totally
white background. If background is not specified, BASICG
uses CHR$(&H~~).

Painting continues until a border is reached or until PAINT
does not alter the state of any pixels in a row. However, if

----------1tad1elhaell----------

-37-

Computer Graphics Operation Manual
-----------TRS-B0 ® ----------

pixels in a given row are not altered and the tile that was
to be painted in that row matches the background tile,
painting will continue on to the next row.

Note: BASICG uses Free Memory for tiling.

Examples

lf CIRCLE (3JJ,1JJ),1JJ
2J PAINT (3JJ,1JJ),l,l

Paints the circle in solid white.

lf CIRCLE (1JJ,1JJ),3JJ
2J PAINT (lJJ,lJJ),1,1

Paints the circle. Only the visible portion of the circle
is painted on the screen.

5 A=l
6 SCREEN J
lf CIRCLE (32J,12J),1JJ
2J CIRCLE (lff,lff>,Sf
3J CIRCLE (4JJ,2JJ),6J
4J CIRCLE (5JJ,7J),SJ
Sf PAINT (32J,12J),A,l
6J PAINT (lJJ,lJJ>,A,l
7J PAINT (4JJ,2JJ),A,l
8J PAINT (5JJ,7J),A,l

The tiling style is assigned the value 1 in line 5 (A=l) for
all PAINT statements. Four circles are drawn and painted in
solid white.

lf LINE (14J,8J)-(5JJ,2JJ),l,B
2J PAINT (26J,12J),CHR$(&HEE)+CHR$(&H77)+CHR$(~J),l

Paints box in specified tiling style using strings.

lf CIRCLE (3ff,1JJ>,1JJ
2J PAINT (3JJ,1JJ),"D",l

This example uses a character constant to paint the circle
in vertical black and white stripes. The character "D" (~lJJ

---------- llafl1elhaeli----------

-38-

computer Graphics Operation Manual
-----------TRS-B0 ® ----------

JlJJ> sets this vertical pattern: one vertical row of pixels
ON, three rows OFF.

lJ CIRCLE (32J,12J),2JJ
2J PAINT (32J,12J),"3322ll",l
3J PAINT (1JJ,7J),"EFEF",l

This example draws and paints a circle, then paints the area
surrounding the circle with a different paint style (line
3J). This PAINT statement's (line 3J) startpoint must be
outside the border of the circle.

lJ PAINT (32J,12J),CHR$(&HFF),l
2J CIRCLE (32J,12J),1JJ,J
3J PAINT (32J,12J),CHR$(J)+CHR$(&HFF),J,CHR$(&HFF)

Paints the screen white, draws a circle and paints the
circle with a pattern.

lJ PAINT (32J,12J),CHR$(&HFF),l
2J CIRCLE (32J,12J),1JJ,J
3J PAINT (32J,12J),CHR$(J)+CHR$(&HAA),J,CHR$(&HFF)

Paints the screen white, draws a circle and paints the
circle with a pattern.

lJ CIRCLE(3JJ,1JJ),1JJ
2J A$=CHR$(&HJJ)+CHR$(&H7E)+CHR$(&Hl8)+CHR$(&Hl8)+CHR$(&Hl8)

+CHR$(&Hl8)+CHR$(&Hl8)+CHR$(&H,J)
3J PAINT(3JJ,1JJ),A$,l

This draws the circle and paints with the letter T within
the parameters of the circle.

lJ A$=CHR$(&H4l)+CHR$(&H22)+CHR$(&Hl4)+CHR$(&H,8)+CHR$(&Hl4)
+CHR$(&H22)+CHR$(&H4l)+CHR$(&H,J)

2J PAINT (3JJ,1JJ),A$, 1

This paints Xs over the entire screen.

----------ltadaolhaell----------
-39-

Computer Graphics Operation Manual

-----------TRS-BO ® ----------

1 CLEAR l{J{J
5 SCREEN fJ
l{J TILE$({J)=CHR$(&H22)+CHR$(&H{J{J)
2{J TILE$(l)=CHR$(&HFF)+CHR$(&H{J{J)
3{J TILE$(2)=CHR$(&H99)+CHR$(&H66)
4{J TILE$(3)=CHR$(&H99)
si TILE$(4)=CHR$(&HFF)
6{J TILE$(5)=CHR$(&HF~)+CHR$(&HF~)+CHR$(&H~F)+CHR$(&H~F)
7{J TILE$(6)=CHR$(&H3C)+CHR$(&H3C)+CHR$(&HFF)
S{J TILE$(7)=CHR$(&H~3)+CHR$(&H~C)+CHR$(&H3~)+CHR$(&HC~)
9i A$=TILE$(~)+TILE$(l)+TILE$(2)+TILE$(3)+TILE$(4)

+TILE$(5)+TILE$(6)+TILE$(7)
l~~ PAINT(3~~,l~{J),A$,l

This example paints the screen with a tiling pattern made up
of eight individually defined tile strings (~-7).

&POINT (function)
Returns Pixel Value

The &POINT command lets you read the OFF/ON value of a pixel
from the screen.

Values for &POINT that are off the screen (i.e., PRINT
&POINT ca~i,s~{J)) return a -1, signifying the pixel is off
the screen.

Example

1~ PSET(3{J{J,l{J~),l
2~ PRINT &POINT(3~~,l~~)

---------- ltadaelhaell----------

-4{J-

Computer Graphics Operation Manual
-----------TRS-B0 ® ----------

Reads and prints the value of the pixel at the point's
coordinates (3fi}'J,lfil'J> and displays its value: 1.

PRINT &POINT(3fi}'fi}'fi}',lfi}',,)

Since the pixel is off the screen, a -1 is returned.

PRINT &POINT(-3fi}'fi}'fi}',-lfi}'Jfi}')

Since the pixel is off the screen, a -1 is returned.

PSET (2JJ, lfi}'fi}') , J1
PRINT &POINT(2fi}',,lfi}'fi}')

Reads and prints the value of the pixel at the point's
coordinates (2fi}'J,lfil'fil'> and displays its value: $1.

lfi}' PSET(3fi}'fi}',lfi}'fi}'),l
2, IF &POINT(3fi}'J,lf,1fi}')=l THEN PRINT "GRAPHICS BASIC!"

Sets the point ON. Since the point's value is 1, line 2J is
executed and Graphics BASIC is displayed:

GRAPHICS BASIC!

5 SCREEN J
lfi}' PSET(RND(64,),RND(24fi}')),l
2fi}' IF &POINT(32fi}',12fi}')=l THEN STOP
3g GOTO lfi}'

Sets points randomly until (32f,12fi}') is set.

5 CLR
lfi}' LINE(Sfi}',8fi}')-(12f,1Jg),l,BF
2J PRINT &POINT(lfi}',,8fi}')
3g PRINT &POINT(llfi}',Sfi}')
4g PRINT &POINT(ll5,9f)
SJ PRINT &POINT(Sfi}',4fi}')
6fi}' PRINT &POINT(l3g,12fi}')

The first three pixels are in the filled box, so the value 1
(one) is displayed for each of the statements in lines 2fi}',
3g, and 4fi}'. The pixels specified in lines Sf,1 and 6~ are not
in the shaded box and gs are returned.

----------ladaelhaeli----------

-41-

Computer Graphics Operation Manual

-----------TRS-BO ® -----------

PRESET
Sets Pixel OFF (or ON)

PRESET sets a pixel either OFF(~) or ON (1), depending on
switch. If switch is not specified,~ (OFF) is used.

Values for (~) that are larger than the parameters of
the screen (i.e., greater than 639 for x and 239 for y)
are accepted, but these points are off the screen and
therefore are not PRESET.

Note: The only choice for switch is~ or 1. If you enter
any other number, an Illegal Function Call error will
result.

Examples

1~ PRESET (5~,5~),l
2i PRESET csi,s~,,~

Turns ON the pixel located at the specified coordinates (in
line 1i) and turns the pixel OFF (in line 2i).

1~ PRESET (32~ 1 12~),1
2i PRESET (3~i,1ii),l
3~ PRESET (34~,14~),1
4~ FOR I=l TO 1ii~: NEXT I
si PRESET (32~ 1 12~)
Gi PRESET (3~i,1~~)
1i PRESET (34~ 1 14~)
ai FOR I=l TO 1i~i: NEXT I

----------1tad1elhaell----------

-42-

Computer Graphics
----------TRS-B0 ®

Operation Manual

Sets the three specified pixels ON (through the three PRESET
statements), pauses, and then turns the three pixels OFF.

PRESET(3~~~,l~~~),l

The values for (~) are accepted, but since the
coordinates are beyond the parameters of the screen, the
point is not PRESET.

PRINT t-3,
Write Text Characters to the Graphics Screen

PRINT #-3, is used to write text characters to the Graphics
Screen. This is the easiest way to display textual data on
the Graphics Screen. Characters are displayed starting at
the current Graphics Cursor and going in the direction
specified by the most recently executed GLOCATE command. If
a GLOCATE command was not executed prior to the PRINT #-3,
command, a direction of~ is assumed.

PRINT #-3, will only print text characters (see Appendix C
of the Model III Operation and BASIC Language Reference
Manual). Each character displayed in the~ or 2 direction
uses an 8 X 8 pixel grid; each character displayed in the 1
or 3 direction uses a 16 X 8 grid. Executing this command
will position the Graphics Cursor to the end of the last
character that was displayed.

Displaying text in direction~ engages a wraparound feature.
If the end of a line is reached, BASICG will continue the

----------llad1elhaell----------

-43-

Computer Graphics Operation Manual

-----------TRS-BO ® -----------

display on the next line. If the end of the screen is
reached, BASICG will continue the display at the beginning
of the screen without scrolling. If there is not enough room
to display at least one character at the current Graphics
Cursor, an Illegal Function Call error will result. When
displaying text in other directions, an attempt to display
text outside of the currently defined screen will cause an
Illegal Function Call er.ror to be given.

PSET
Sets Pixel ON (or OFF)

PSET sets a pixel either OFF(~) or ON (1), depending on
switch. If switch is not specified, 1 (ON) is used.

The only choice for switch with PSET is~ and 1. If you
enter any other number, an Illegal Function Call will occur.

Values for (~) that are larger than the parameters of
the screen (i.e., greater than 639 for~ and 239 for y)
are accepted, but these points are off the screen and
therefore are not PSET.

Note: The only distinction between PRESET and PSET in BASICG
is the default value for switch. The default value for
PRESET is~, while the value for PSET is 1.

Examples

1~ A=l
2~ PSET (5~,5~),A

Turns the pixel located at the specified coordinates ON.

---------lladlOlhaell---------

-44-

Computer Graphics Operation Manual

-----------TRS·BO ® ----------

lJ PSET (RND(64J),RND(24J)),l
2 J GOTO 1 J

Pixels are randomly set to 1 (ON) over the defined area (the
entire screen).

PSET (-3JJ,-2JJ),l

The values for (~) are accepted, but since it is beyond
the parameters of the screen, the pixel is not set.

lJ PSET (32J,12J),l
2J A$=INKEY$: IF A$="" THEN 2J
3J PSET(32J,12J),~

Line lJ sets ("turns ON") a pixel; line 3J resets ("turns
OFF") the same dot.

---------- ltadlOlllaeli----------

-45-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

PUT
Puts Rectangular Pixel Area from Array onto Screen

Important Note: BASICG recognizes two syntaxes of the
command PUT -- the syntax described in this manual and the
syntax described in the Model III Operation and BASIC
Language Reference Manual. BASIC recognizes only the PUT
syntax described in the Model III Operation and BASIC
Language Reference Manual.

The PUT function puts a rectangular pixel area stored in an
array, and defined by GET, onto the screen. GET and PUT work

----------1tad1elhaeli----------

-46-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

jointly. Together, they allow you to "get" a rectangular
pixel area which contains a graphic display, store it in an
array, then "put" the array back on the screen later.

Remember that before you GET or PUT, you have to create an
array to store the bit contents of the display rectangular
pixel area. The size of the array must match that of the
display rectangular pixel area.

PUT moves your GET rectangular pixel area to the startpoint
in your PUT statement and the startpoint is the new upper
left corner of the rectangular pixel area.

To illustrate:

5 DIM V(3)
1a GET (2,3)-(7,7),V
1aa PUT (5a,5a>,V,PSET

After GETting, PUT this rectangular pixel area to (5a,5g).
The new coordinates are:

(5g,5g) (51,5g) (52,5g) (53,5g) (54,5g) (55,5g)
(5a,51) (51,51) (52,51) (53,51) (54,51) (55,51)
(5a,52) (51,52) (52,52) (53,52) (54,52) (55,52)
(5a,53) (51,53) (52,53) (53,53) (54,53) (55,53)
c5a,54> <51,54> <52,54> (53,54> <54,54> (55,54>

The rectangular pixel area ((5a,5g)-(55,54)) is exactly the
same pixel size as (2,3)-(7,7); only the location is
different.

----------1tad1elllaeli----------
-47-

Computer Graphics
TRS-BO®

Operation Manual

(2,3) (7,3)

~ - ---- ---- -"GET" - -- --- -RECTANGULAR - -- -PIXEL - -- -AREA - --- --- -- -- (50,50) -- - - -(2,7) - (7,7) - -- --- -- -- - "PUT" - --- -- RECTANGULAR - --- --- PIXEL -- - AREA - --- ... -- --- -... - ---- -
(50,54)

Figure 16

With PUT, action can be PSET, PRESET, OR, AND, or XOR.

These operators are used in BASICG to test the OFF/ON (or
~/1) conditions of a pixel in the original pixel area and
the destination pixel area.

For example (using PSET), the pixel is set ON only if the
bit in the PUT array is set ON. If the bit is OFF, the pixel
is turned OFF (reset).

With PRESET, the pixel is set ON only if the bit in the PUT
array is set OFF. If the bit is ON, the pixel is turned OFF
(reset).

Using OR, the pixel is set ON if the bit in the PUT array is
ON or the corresponding pixel in the destination area is ON.
In all other cases, the pixel is turned OFF (reset). In
other words:

OFF ON
OFF ON
ON ON

With AND, the pixel is set ON if both the bit in the PUT
array and the corresponding pixel in the destination area
are ON. In all other cases, the pixel is turned OFF (reset).
In other words:

(55,50)

(55,54)

----------1tad10lhaell----------

-48-

"~

Computer Graphics
-----------TRS-BO ®

OFF ON
OFF OFF OFF
ON OFF ON

Operation Manual

Using XOR, the pixel is set ON if either the bit in the PUT
array or the corresponding pixel in the destination area
(but not both) is ON. In all other cases, the pixel is
turned OFF (reset). In other words:

OFF ON
OFF OFF ON
ON ON OFF

The following BASICG program will graphically illustrate the
differences between the various action options. Since the program
will give you a ,"hard-copy" printout of the action options, you'll
need to connect your TRS-8,0 to a graphic printer. See "Graphics
Utilities" later in this manual for more details on using the
Computer Graphics package with a printer.

---------1tad1elhaell---------

-49-

Computer Graphics Operation Manual
-----------TRS-SO ® -----------

1_0' DATA "OR", "AND", "PRESET", "PSET", "XOR"
2_0' CLR: SCREEN _0'
3_0' FOR Y= 1_0' TO 21_0' STEP 5_0'
4_0' FOR X= _0' TO 4_0'_0' STEP 2_0'_0'
5_0' LINE (X+4_0',Y-5)-(X+l_0'_0',Y+25),1,B
6_0' NEXT X
7_0' LINE (5_0',Y)-(9_0',Y+l.0'),l,BF
8_0' FOR X= 2.0'_0' TO 4_0'_0' STEP 2_0'_0'
9_0' LINE (X+5_0',Y)-(X+7_0',Y+2_0'),l,BF
1_0'_0' NEXT X
11_0' NEXT Y
12,0 DIM V (1,0,0)
13,0 GET (5_0',1_0')-(9_0',3_0'),V
14,0 FOR N= 1 TO 5
15,0 R= (N-1)*5+1
16_0' READ A$
165 GLOCATE (136,R*l,0),,0
17,0 PRINT #-3, A$;
175 GLOCATE (36,0,R*l.0'),,0
18,0 PRINT #-3, "= ";
19,0 ON N GOTO 2_0'_0', 21_0', 22,0, 23,0, 24,0
2,0,0 PUT (45_0',1_0'), V,OR: GOTO 25,0
21,0 PUT (45,0,6_0'), V,AND: GOTO 25,0
22,0 PUT (45,0,11,0), V,PRESET: GOTO 25,0
23,0 PUT (45,0,16,0), V,PSET: GOTO 25,0
24_0' PUT (45_0',21,0), V,XOR
25,0 NEXT N
26,0 CMD "I", "GPRINT"
27_0' SCREENl

~
~
~
~
~

OR I]
AND [iJ
PRESET I]
PSET I]
XOR I]

Figure 17

[rJ

~
[;;]

~
~

----------1tad1olhaell----------

-5.0'-

Operation Manual Computer Graphics

-----------TRS-BO ® ----------

Hints and Tips about PUT:

An Illegal Function Call error will result if you
attempt to PUT a rectangular pixel area to a section of
the screen which is totally or partially beyond the
parameters of the screen. For example:

GET(5g,5g)-(15~,15~),V
PUT(2~~,2~~),V,PSET

returns an error because the rectangular pixel area
cannot be physically moved to the specified rectangular
pixel area (i.e., (2g~, 2~~) - (3~g, 3~~)) •

If you use PUT with a viewport (see VIEW), all
coordinates must be within the parameters of the
viewport or you'll get an Illegal Function Call error.

Examples

PUT with PSET

1~ DIM V% (63)
15 SCREEN~
2~ CIRCLE (3~,3~),l~
3~ GET (l~,l~)-(4~,4~),V%
4~ FOR I=l TO 5g~: NEXT I
5g CLR
6~ PUT (ll~,ll~),V%,PSET
7~ FOR I=l TO 5~~: NEXT I

In this example, the circle is drawn, stored, moved and re-created.
First the white-bordered circle appears in the upper left corner of
the screen (position (3~,3~) -- program line 2~). After a couple
of seconds (because of the delay loop), it disappears and then
reappears on the screen -- (ll~,11~) program line 6~.

What specifically happened is:

1. An array was created (line 1~).

2. A circle was drawn (line 2~).

3. GET -- The circle which was within the source
rectangular pixel area, as specified in the GET

----------lladlOlhaell----------

-51-

Computer Graphics Operation Manual

-----------TRS-80 ® ·--------·--

statement's parameters is stored in the array (line 3g).

4. The screen is cleared (line 5g).

5. PUT -- The circle from the array was PUT into the
destination rectangular pixel area as specified in the
PUT statement (line 6g) with the PSET option.

1g DIM V%(7gg)
2g LINE c2g,2g)-c2g,ag)
3g LINE cag,~)-(8g,ag)
4g LINE c3g,3g)-(3g,ag)
5g LINE c1g,5)-(1g,ag)
6g GET cg,g)-(lgg,1gg),V%
7g FOR I=l TO 1ggg: NEXT I
ag PUT c1ag,12g),V%,PSET
gg FOR I=l TO 1ggg: NEXT I

Draws four lines. GET stores the lines in the rectangular
pixel area. PUT moves the lines to another rectangular
pixel area.

SCREEN
Selects Screen

SCREEN lets you set the proper screen. SCREEN g selects the
Graphics Screen; SCREEN 1 selects the Text Screen. Any value
other than g or 1 with SCREEN gives an error.

SCREEN is convenient to use when you want to display either
a Graphics Screen or a Text Screen. For example, you may
have run a program and then added to it. With SCREEN, you
can remove the graphics display, add to the program, and
then return to the Graphics Screen.

Whenever BASICG tries to display a character on the Text
Screen (like in an INPUT or PRINT statement), the screen is

----------llad1elhaeli----------

-52-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

automatically set to the Text Screen. If the program is
still running after executing the statement, BASICG will
revert to the screen that was in effect prior to executing
the statement.

Examples

1_0' SCREEN 1
2_0' LINE (15_0',15_0')-(2_0'_0',2_0'_0')

The computer executes the short program but the Graphics
Screen cannot display the graphics because of the SCREEN 1
command. To display the line, type: SCREEN _0' <ENTER>.

1_0' CLR
2_0' SCREEN l
3_0' LINE(l.0',1_0')-(255,191)
4_0' LINE(~,191)-(255,~)
5_0' A$=INKEY$: IF A$=""THEN 5.0'
6.0' SCREEN _0'
7_0' A$=INKEY$: IF A$=""THEN 7_0'
8_0' GOTO 1_0'

The computer executes the program (draws two intersecting
lines) but the screen cannot display the graphics because of
SCREEN 1. By pressing any key, the graphics are displayed
because of SCREEN _0'.

1_0' CIRCLE (2_0'_0',1_0'_0'),1_0'_0'
2_0' PAINT (2_0'_0',1_0'_0'),"44",l

Now run the program and type:

SCREEN _0' <ENTER>

This command turns the Graphics Screen ON .•
By entering the SCREEN 1 and SCREEN .0' commands, you can
alternately turn the Graphics Screen OFF and ON without
losing the executed program display.

----------llad1elhaeli----------

-53-

Computer Graphics
-----------TRS-BO ®

VIEW {command)
Redefines the Screen (Creates a Viewport)

Operation Manual

VIEW creates a "viewport" which redefines the screen
parameters (~-639 for X and ~-239 for Y). This defined area
then becomes the only place you can draw graphics displays.

If you enter more than one viewport, you can only draw
displays in the last defined viewport.

Since VIEW redefines the SCREEN:

CLR clears the interior of the viewport only.
If you PSET or PRESET points, draw circles, etc.,
beyond the parameters of the currently defined
viewport, only the portions that are in the viewport
will be displayed.
If you try to read a point beyond the viewport (with
POINT), it will return a -1.
You can only GET and PUT arrays within the viewport.
You can't PAINT outside the viewport.

The upper-left corner of the viewport is read as (~,~) (the
"relative origin") when creating items inside the viewport.
All the other coordinates are read relative to this origin.
However, the "absolute coordinates" of the viewport, as they
are actually defined on the Graphics Cartesian system, are
retained in memory and can be read using VIEW as a function.

----------1tad1olhaell----------

-54-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

Every viewport has absolute and relative coordinates and
graphic displays are drawn inside using the relative
coordinates. For example:

1, VIEW c1,,,1,,)-(2 •• ,2,,),.,l
2, LINE (3.,15)-(8.,6,),1

c1,,,1,,) A.C.
c,,i> R.C.

Cl0'0',20'0'> A.C.
ci,10'0'> R.C.

_____ c2,,,1,,) A.C.
(3,, 15)

~ R.C.

R.C. ~
c0,,6/;3'>

n,,,i> R.C.

(20'0',20'0'> A.C.
Cl0'0', 10'0') R. C.

Figure 18

Note: After each of the following examples, you'll have to
redefine the entire screen to VIEWC0',0')-(639,239) before
performing any other Graphics functions.

Examples

VIEW (10'0',1,,)-(2.,,20'0'>,0',1

Draws a black viewport (pixels OFF) that is outlined in
white (border pixels ON).

VIEW Cl.0',10'•>-(2 •• ,2.0'>,l,l

Draws a white viewport (pixels ON) that is outlined in white
(border pixels ON).

VIEW C50',50')-Cl0'.,l ••),l,0'

Draws a white viewport (pixels ON) that is outlined in black
(border pixels OFF).

----------llad1elhaell----------

-55-

Computer Graphics Operation Manual

-----------TRS-BO ® ----------

1g VIEW c1g,1g)-(Ggg,2gg),~,l
2g VIEW csg,S~)-(lgg,1gg),~,1
3g LINE(RND(Sgg),RND(l9g))-(RND(Sgg),RND(l9g))
4g GOTO 3g

First you defined a large viewport that almost covered the
entire screen. Next you defined a smaller viewport. The
Random command draws lines within the specified parameters
but only the segments of the lines that are within the
parameters of the smaller viewport are visible since it was
specified last.

lg VIEW(8g,ag)-(4gg,2gg),~,l
2g VIEW(1gg,9g)-(3gg,17g),~,l
3g VIEW(l2g,1gg)-(2gg,2gg),~,l
4g VIEW(Sg,S~)-(lgg,1gg),g,1

Draws four viewports. All further drawing takes place in the
last viewport specified.

1g VIEW(21~,8g)-(42g,16~),g,1
2g CIRCLE(3gg,12g),l8g,1
3g LINE(l5,15)-(6g,Gg),l
4g CIRCLE(9g,4g),Sg,1
sg LINE(4g,3g)-(Sgg,3g),l

Draws a viewport. Draws a circle but only a portion is
within the parameters of the viewport. This circle's
centerpoint is relative to the upper left corner of the
viewport and not to the absolute coordinates of the graphics
Cartesian system. A line is drawn which is totally within
the parameters of the viewport. Another circle is drawn
which is totally within the parameters of the viewport.
Another line is drawn which is only partially within the
parameters of the viewport.

1i VIEW c19g,7g)-(44g,1ag),~,1
2g CIRCLE (3gg,14g),17g,l
3g CIRCLE c1gg,23g),4gg,1
4g LINE c1g,1g)-(Sgg,23g),l

Draws a viewport. A circle is drawn but only a portion is
within the parameters of the viewport. knother circle is
drawn and a larger portion is within the parameters of the

----------IIMIIOlhaeli----------

-56-

~'

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

viewport. A line is drawn but only a segment is within the
parameters of the viewport.

&VIEW (function)
Returns Viewport Coordinates

&VIEW returns a corner coordinate of a viewport. It is
important to note the parentheses are not optional. If you
enter the &VIEW function without the parentheses, a Syntax
Error will result.

To display one of the four viewport coordinates, you must
enter one of the following values for p:

~ returns the upper left X-coordinate
1 returns the upper left Y-coordinate . 2 returns the lower right X-coordinate
3 returns the lower right Y-coordinate

Important Note: When you have defined several viewports,
&VIEW only returns the coordinates of the last-defined
viewport.

Examples

Set up the following viewport:

Now type:

Displays:

Type:

Displays:

VIEW(l~~,8~)-(22~,15~),i,1

PRINT &VIEW(i) <ENTER>

PRINT &VIEW(l) <ENTER>

8~

----------1tad1elhaell----------

-57-

Computer Graphics Operation Manual
-----------TRS-80 ® ----------

Enter: PRINT &VIEW(2) <ENTER>

Displays: 22~

Type: PRINT &VIEW(3) <ENTER>

Displays: 15~

Set up the following viewports:

VIEW(l~~,8~)-(22~,15~),~,l <ENTER>
VIEW(25~,17~)-(35~,22~),~,l <ENTER>

Now enter: PRINT &VIEW(~) <ENTER>

Displays: 25~

Type: PRINT &VIEW(l) <ENTER>

Displays: 17~

Now type: PRINT &VIEW(2) <ENTER>

Displays: 35~

Type: PRINT &VIEW(3) <ENTER>

Displays: 22~

---------1tad1elhaell---------

-58-

Computer Graphics Operation Manual
-----------TRS-80 ® -----------

3/ Graphics Utilities

There are six utilities included with the TRs-ai Computer
Graphics package which are intended to be used as
stand-alone programs. However, if you are an experienced
programmer, you can use these with BASICG and FORTRAN. The
source-code for each utility, that illustrate Graphics
programming techniques, is listed later in this section.

The Graphics Utilities let you:

Save graphic displays to diskette.
Load graphic displays from diskette.
Print graphic displays on a graphics printer.
Turn graphics display OFF or ON.
Clear graphics memory.

To use these utilities from BASICG, use the CMD"I" command
followed by a comma and the name of the utility in quotation
marks (e.g., CMD"I","GCLS" <ENTER>) and control returns to
TRSDOS Ready. From TRSDOS, enter the utility directly,
without quotation marks (e.g., GCLS <ENTER>).

To call these routines from FORTRAN, see the Subprogram
Linkage section of your TRS-8f Model III FORTRAN Manual
(2G-22ii).

Note: These utilities load into high memory starting at F~ii
(hex); therefore, they cannot be used with DEBUG, DO, or any
communication drivers that use high memory.

----------llad1elhaell----------

-59-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

===-
Utilities

===---
Command Action

Table 6

GCLS
Clears Graphics Screen

GCLS clears the Graphics Screen by erasing the contents of
graphics memory corresponding to the visible Graphics
Screen. GCLS erases graphics memory by writing zeroes (OFF)
to every bit in memory. GCLS does not clear the Text Screen
(video memory).

Examples

When TRSDOS Ready is displayed, type:

GCLS <ENTER>

or when the BASICG READY prompt(>) is displayed, type:

CMD"I","GCLS" <ENTER>
or

1,0,0 CMD"I", "GCLS"

---------llad1elhaeli---------

-6.0-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

GLOAD
Loads Graphics Memory from Diskette

Note: There cannot be spaces within a file specification.
TRSDOS terminates the file specification at the first space.

With GLOAD, you can load TRSDOS files that have graphic
contents into graphics memory. These files must have been
previously saved to diskette using GSAVE.

Examples

When TRSDOS Ready is displayed, type:

GLOAD PROGRAM/DAT.PASSWORD:~ <ENTER>

or when the BASICG READY prompt(>) is displayed, type:

CMD"I","GLOAD PROGRAM" <ENTER>
or

li~ CMD"I", "GLOAD PROGRAM"

----------1tad1elhaell----------

-61-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

GPRINT
Lists Graphic Display to Printer

GPRINT lets you print graphics memory on a graphics
(dot-addressable) printer, such as Radio Shack's DMP-1~~
(26-1253) or DMP-2~~ (26-1254). Both of these printers have
a 9 1/2" carriage. However, distortion will occur when
Graphic routines are printed with GPRINT. This is because
GPRINT is not a true pixel-by-pixel "Screen Dump" since the
pixel size and spacing on the screen is different from the
pixel size and spacing on the Printer. GPRINT is a point of
departure for you to obtain hard-copy representations of
graphics.

To print graphic displays, GPRINT turns the contents of the
Graphic Screen clockwise 9~ degrees and then prints.

However, FORMS must be used to set printing parameters.

Most uses will require that you set FORMS when TRSDOS Ready
is displayed:

FORMS (LINES=6~ 1 WIDTH=~) <ENTER>

See your Model III Operation and BASIC Language Reference
and printer owner's manual for more details on setting
printing parameters.

Important Note! Do not press <BREAK> while GPRINT is
executing.

Examples

When TRSDOS Ready is displayed, type:

GPRINT <ENTER>

or when the BASICG READY prompt(>) is displayed, type:

CMD" I", "GPRINT" <ENTER>
or

l~~ CMD"I","GPRINT"

For a complete GPRINT sample session, see Appendix D.

----------llad1elhaell----------

-62-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

GPRT2
Print Graphics

GPRT2 is similar to GPRINT but is designed for use with
wide-carriage (15 11

) printers such as the DMP-4~~ and
DMP-5~~.

GPRT2 is different from GPRINT in that the image is not
rotated 9i degrees and a different aspect ratio is used.

If GPRT2 does not produce the quality of print out you
desire, try GPRT3 or GPRINT.

Important Notet Do not press <BREAK> while GPRT2 is
executing.

Examples

When TRSDOS Ready is displayed, type:

GPRT2 <ENTER>

or when the BASICG READY prompt(>) is displayed, type:

CMD"I","GPRT2" <ENTER>
or

1ii CMD"I","GPRT2"

GPRT3
Print Graphics (Double on the Y-Axis)

----------1tad1elllaeli----------

-63-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

GPRT3 is similar to GPRINT but is designed for use with
wide-carriage (15") printers such as the DMP-4ii and
DMP-sii.

GPRT3 is different from GPRINT in that the image is not
rotated 9i degrees and a different aspect ratio is used.

If GPRT3 does not produce the quality of print-out you
desire, try GPRT2 or GPRINT.

Important Note! Do not press <BREAK> while GPRT3 is
executing.

Examples

When TRSDOS Ready is displayed, type:

GPRT3 <ENTER>

or when the BASICG READY prompt(>) is displayed, type:

CMD"I","GPRT3" <ENTER>
or

1ii CMD"I","GPRT3"

GROFF
Turns Graphics Display OFF

GROFF turns the Graphics Screen OFF. GROFF is different from
GCLS since GROFF simply removes the Graphics display without
erasing the contents of graphic memory. GCLS completely
clears graphics memory by writing zeroes (OFF) to every bit
in memory.

Examples

When TRSDOS Ready is displayed, type:

GROFF <ENTER>

or when the BASICG READY prompt (>) is displayed, type:

----------1tad1elhaell----------

-64-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

or

GRON

CMD"I 11 ,"GROFF 11 <ENTER>

lfcf{cf CMD"I 11
, "GROFF"

Turns Graphics Display ON

GRON turns the Graphics Screen ON.

Examples

When TRSDOS Ready is displayed, type:

GRON <ENTER>

or when the BASICG READY prompt(>) is displayed, type:

CMD"I","GRON" <ENTER>
or

lfcf {cf CMD II I II , II GRON II

----------ltadlOlbaeli----------

-65-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

GSAVE
Saves Graphics Memory to Diskette

Note: There cannot be spaces within a file specification.
TRSDOS terminates the file specification at the first space.

With GSAVE, the contents in graphics memory is saved under a
specified filename which follows the standard TRSDOS
format. To load the file back into memory, use GLOAD.

Examples

When TRSDOS Ready is displayed, type:

GSAVE PROGRAM/DAT.PASSWORD:~ <ENTER>

or when the BASICG READY prompt(>) is displayed, type:

CMD"I","GSAVE PROGRAM" <ENTER>
or

l~~ CMD"I","GSAVE PROGRAM"

----------llad1elhaell----------

-66-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

4/ Graphics Subroutine Library (FORTRAN)

The Graphics Subroutine Library included on the Computer
Graphics diskette lets you use the functions of TRS-8~
Computer Graphics while programming in Model III FORTRAN
(26-22~~). This library (GRPLIB/REL) must be linked to any
FORTRAN program that accesses the Graphics Subroutines.

BASICG vs. the Graphics Subroutine Library

The Graphics Subroutine Library contains subroutines which
provide the same capabilities as the Graphics commands and
functions in BASICG. The Graphics subroutines have basically the
same names and parameters as the BASICG commands. The major
differences between the Library subroutines and the BASICG
commands are:

The BASICG command LINE has three corresponding library
subroutines: LINE, LINEB, and LINEBF. LINEB and LINEBF
provide the functions of the BASICG command LINE with the
parameters Band BF respectively.
The BASICG command PAINT has two corresponding library
subroutines: PAINT and PAINTT. PAINT is for painting solid
black or white, and PAINTT is for painting with tiling.
The Library subroutines that correspond to BASICG commands
that use (x,y) coordinates (except for VIEW) use (x,y)
coordinates that have been previously set. The subroutines
used to set the coordinates are SETXY and SETXYR.

Setting Points Using SETXY and SETXYR

The coordinates specified by SETXY or SETXYR will be called the
"current" and "previous" coordinates. Subroutines that use one
(x,y) coordinate pair use the "current" coordinates and
subroutines that use two (x,y) pairs use both the "current" and
the "previous" coordinates. Each call to SETXY or SETXYR sets
the coordinates as follows:

1. Assign the values of the "current" (x,y) coordinates to the
"previous" (x,y) coordinates, (discarding the old "previous"
coordinates).

----------1tad1elhaeli----------

-91-

Computer Graphics Operation Manual

-----------TRS·BO ® ----------

2. Assign new values for the "current" Cx,y) coordinates as
specified by the arguments supplied. SETXY simply sets the
"current" coordinates to the values of its arguments.
SETXYR adds the values of its arguments to the "current"
coordinates to obtain the new coordinates.

Initialization

Before any calls are made to Graphics, the Graphics library
and board must be initialized. A special initialization
routine CGRPINI) is included in the library. A call to
GRPINI must be made as the first access to the Graphics
library.

Example

Linking

SAMPLE INITIALIZATION
DIMENSION V(3~,3~)
CALL GRP IN I on

The Library CGRPLIB/REL) must be linked to any programs that
access the Graphics Subroutines. You must use the linker
(L8g) to generate the load module.

Example

L8g <ENTER>
*SAMPLE:1-N
*GRPHSAM,GRPLIB-S,FORLIB-S,-U
*-E

This example links both the Graphics Library and the FORTRAN
Subroutine Library to the relocatable file GRPHSAM/REL. In
this example, SAMPLE:1-N is the file name, drive
specification, and switch, respectively; GRPHSAM, GRPLIB-S,
FORLIB-S, and -U are the names of the relocatable modules to
be linked and their respective switches. -E ends the routine
and creates the executable program SAMPLE. The *'sin the
example are prompts for the user -- not data to be entered.

Note: If there are unresolved external references, the
FORTRAN Library may need to be scanned a second time.

----------llad1elhaeli----------

-92-

Computer Graphics
----------TRS·BO ®

Errors

Operation Manual

If you enter incorrect parameters for any of the Graphics
Subroutines, your screen will display:

GRAPHICS ERROR

and return program control to TRSDOS Ready. This is the
only error message you'll get when executing the
Subroutines.

Important Note: Free memory is utilized by the Graphic
Routine for temporary storage. Extreme care should be
exercised if your program accesses this memory.

Routines/Functions

Most of the FORTRAN Subroutines and functions described in
this section have a corresponding command in the Graphics
BASIC Language Reference section of this manual.

---------- llad1elhaeli----------

-93-

Computer Graphics
----------TRS-BO ®

Operation Manual

---====-===--

Routine

CIRCLE

CLS
GET

GPRINT

GRPINI
LINE
LINEB
LINEBF
LOCATE

PAINT

PAINTT

PRESET
PSET
PUT

SCREEN
SETXY
SETXYR
VIEW

FORTRAN Routines

Action

Draws a circle, arc,
semicircle, or ellipse.
Clears the Graphics Screen.
Reads the contents of a rectangular
pixel area into an array.
Displays textual data on the
Graphics Sere.en.
Graphics initialization routine.
Draws a line.
Draws a box.
Draws a filled box.
Sets the direction for displaying
textual data on the Graphics
Screen.
Paints the screen in specified
OFF/ON color.
Paints the screen in a specified
pattern.
Sets pixel OFF/ON.
Sets pixel OFF/ON.
Puts the stored array on the
screen.
Selects the screen.
Sets (x,y) coordinates (absolute).
Sets (x,y) coordinates (relative).
Sets up a viewport where graphics
is displayed.

===-
Table 7

==--

Function

POINT

FVIEW

FORTRAN Functions

Action

Reads a pixel's value at a
specified coordinate.
Reads a viewport's parameters.

=======-==--===---
Table 8

-----------lladaelllaell----------
-94-

·~.

Computer Graphics Operation Manual

-----------TRS·BO ® ----------

CIRCLE
Draws a Circle, Arc, Semicircle, Point or Ellipse

CIRCLE draws a circle. By varying start, end, and aspect
ratio, you can draw arcs, semicircles, or ellipses using

.~. current X- and Y-coordinates as the centerpoint (set by
SETXY or SETXYR).

If start and end are~-~, a circle is drawn starting
from the center right side of the circle. Note: In the
CIRCLE statement, end is read as 2 x PI even though you
have entered~-~- Ifyou enter~-~ for aspect ratio, a
symmetric circle is drawn.

Example

CALL CIRCLE(l~~,1,~.~,~-~,~-~)

---------- ltadaelhaell----------

-95-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

sample Program

This example draws and paints a circle.

CLS

SAMPLE PROGRAM FOR CIRCLE
LOGICAL COLOR,OPTION
COLOR=l
OPTION=~
CALL GRPINI(OPTION)
CALL CLS
CALL SETXY(3~~,1~~)
CALL CIRCLE(l~~,COLOR,~.~,~-~,~-~)
CALL PAINT(COLOR,COLOR)
END

Clears Graphics Screen

Example

CALL CLS

Sample Program (see CIRCLE)

GET
Reads Contents of a Rectangular Pixel Area into an Array

GET reads the contents of a rectangular pixel area into an
array for future use by PUT. The pixel area is a group of
pixels which are defined by the current x and y, and the
previous X- and Y-coordinates specified by the SETXY call.

----------llad1elhaell----------

-96-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

The first two bytes of array are set to the horizontal
(X-axis) number of pixels in the pixel area; the second two
bytes are set to the vertical (Y-axis) number of pixels in
the pixel area. The remainder of array represents the
status of each pixel (either ON or OFF) in the pixel area.
The data is stored in a row-by-row format. The data is
stored eight pixels per byte and each row starts on a byte
boundary.

Array Limits

When the array is defined, space is reserved in memory for
each element of the array. The size of the array is
limited by the amount of memory available for use by your
program -- each real number in your storage array uses
four memory locations (bytes).

The array must be large enough to hold your graphic
display and the rectangular area defined must include all
the points you want to store.

To determine the minimum array size:

1. Divide the number of X-axis pixels by 8 and round
up to the next higher integer.

2. Multiply the result by the number of Y-axis pixels.

When counting the X-Y axis pixels, be sure to include
the first and last pixel.

3. Add four to the total.

4. Divide by four (for real numbers) and two (for integers)
rounding up to the next higher integer. (Note: If
you're using a LOGICAL array, the result of Step #3
above will produce the desired array size.)

When using arrays, the position and size of the
rectangular pixel area is determined by the current and
previous (x,y) coordinates.

Position: upper left corner= startpoint = (xl,yl)
lower left corner= endpoint= (x2,y2)

Size (in pixels): width= x2-xl+l
length= y2-yl+l

----------1tad1elllaeli----------

-97-

Computer Graphics Operation Manual

-----------TRS-BO ® ----------

Example

CALL GET (A, 4,0.0,')

Sample Program

This example draws a circle, saves the circle into an
array, then restores the array to the graphics video.

GPRINT

SAMPLE FOR GET AND PUT
LOGICAL V(l28),ACTION

ACTION=l
CALL GRPINI(,')
CALL CLS
DRAW A CIRCLE
CALL SETXY(3,',3,')
CALL CIRCLE(l,',l,~.,',~.~,~.,')
SET COORDINATES FOR GET ARRAY
CALL SETXY(l~,l~)
CALL SETXY(4~,4~)
STORE GRAPHICS INTO ARRAY WITH GET
CALL GET(V,128)
DO 1~ I=l,5~~~
CONTINUE
CLEAR SCREEN AND RESTORE GRPH FROM ARRAY
CALL CLS
CALL SETXY(ll,',11,')
CALL PUT(V,ACTION)
DO 2~ I=l,5~~,'
CONTINUE
END

Write Text Characters to the Graphics Screen

--------- ltad181haeli---------

-98-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

GPRINT is used to write text characters to the Graphics
Screen. This is the easiest way to display textual data on
the Graphics Screen. Characters are displayed starting at
the current (~ 1 y) coordinates and going in the direction
specified by the most recently executed LOCATE call. If no
LOCATE call was executed prior to the GPRINT call, a
direction of~ is assumed.

GPRINT will only print text characters (see Appendix C of
the Model III Operation and BASIC Language Reference
Manual). Each character displayed in the j or 2 direction
uses an 8 X 8 pixel grid; each character displayed in the 1
or 3 direction uses a 16 X 8 grid. Executing this command
will set the current (~ 1 y) coordinates to the end of the
last character that was displayed.

Displaying text in direction~ engages a wraparound feature.
If the end of a line is reached, the display will be
continued on the next line. If the end of the screen is
reached, the display will be continued at the beginning of
the screen without scrolling. If there is not enough room to
display at least one character at the current (x,y)
coordinates, a GRAPHICS ERROR will result. When displaying
text in other directions, an attempt to display text outside
the currently defined screen will cause a GRAPHICS ERROR to
be given.

GRPINI
Graphics Initialization Routine

GRPINI is the graphics initialization routine. This function
must be called before any other graphics calls are made in
FORTRAN.

Example

CALL GRP IN I (1)

----------rtad1olllaeli----------

-99-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

sample Program (see CIRCLE)

LINE
Draws Line

LINE draws a line between the previous and current
coordinates. These coordinates are set by the SETXY or
SETXYR subroutines.

Example

CALL LINE (1,-1)

Sample Program

This example draws a diagonal line connected to a box, which
is connected to a filled box.

SAMPLE FOR LINE LINEB LINEBF
LOGICAL COLOR
COLOR=l
CALL GRPINI(,0)
CALL CLS
CALL SETXY(l,l)
CALL SETXY(21,0,8,0)
CALL LINE(COLOR,-1)
CALL SETXY(42,0,16,0)
COORDINATES ARE NOW (21,0,8~) (42~,16~)
CALL LINEB(COLOR,-1)
CALL SETXY(639,239)
COORDINATES ARE NOW (42~,16,0) (639,239)
CALL LINEBF(COLOR)
END

----------llad1elhaeli----------

-1.0~-

Computer Graphics
----------TRS-BO ®

LINEB
Draws Box

Operation Manual

LINEB is the same as LINE except LINEB draws a box between
the two sets of coordinates set by the SETXY or SETXYR
subroutines.

Example

CALL LINEB (1,-1)

Sample Program (see LINE)

LINEBF
Draws Painted Box

LINEBF is the same as LINEB except LINEBF fills the box
(colors in the box) and the argument style is not used.

Example

CALL LINEBF (1)

Sample Program (see LINE)

----------1tad1elhaell----------

-1.0'1-

Operation Manual Computer Graphics
---/--------TRS-B0 ® ----------

LOCATE
Sets the Direction for Displaying Text on the Graphics
Screen

LOCATE sets the direction that GPRINT will use to display
textual data. The allowable values for direction are:

~ - zero degree angle
1 - 9~ degree angle
2 - 18~ degree angle
3 - 27~ degree angle

Examples

CALL LOCATE(~)

This program line will cause characters to be displayed at
the current (x,y) coordinates in normal left to right
orientation.

CALL LOCATE (1)

This program line will cause characters to be displayed at
the current (x,y) coordinates in a vertical orientation
going from the top of the screen to the bottom of the
screen.

CALL LOCATE (2)

This program line will cause characters to be displayed
upside down starting at the right of the screen and going
towards the left.

CALL LOCATE (3)

This program line will cause the characters to be displayed
vertically starting at the lower portion of the screen going
towards the top of the screen.

----------1tad1elhaeli----------

-1~2-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

PAINT
Paints Screen in Specified Color

PAINT paints the screen in the specified OFF/ON color
(black or white). It uses the current X- and Y-coordinates
(see SETXY) as its startpoint.

Example

CALL PAINT(l,1)

Sample Program (see CIRCLE)

----------llad1elhaell----------

-10'3-

Computer Graphics Operation Manual
-----------TRS-80 ® -----------

PAINTT
Paints Screen in Specified Pattern

PAINTT lets you paint a precisely defined pattern using a
graphics technique called "tiling." You can paint with
tiling by defining a multi-pixel grid in an array and then
using that array as the paint pattern.

Example

CALL PAINTT (A,l,V)

---------- ltadlelhaell----------

-ly)'4-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

Sample Program

~ini~ C
~i1si
ii2ii
ii3ii
ii3si C
ii4gi
iis~i
ii6~i
ii6sg C
ii1~i
ii0~i
ii9~i
i1iii
i11~i
i12ii
il3ig
i14~i

PRESET
Sets Pixel ON/OFF

EXAMPLE FOR PAINT WITH TILE
LOGICAL A,B,BORDER
DIMENSION A(9)
DIMENSION B(2)
DEFINE TILE ARRAY HERE
DATA A(l), A(2), A(3) / 8, X'81', X'42'/
DATA A (4) , A (5) , A (6) /X ' 2 4 ' , X ' 18 ' , X ' 18 ' /
DATA A (7) , A (8) , A (9) /X ' 2 4 ' , X ' 4 2 ' , X ' 81 ' /
DEFINE BACKGROUND ARRAY HERE
DATA B(l),B(2)/l,i/
CALL GRPINI(i)
CALL CLS
CALL SETXY(3~g,1ii>
CALL CIRCLE(l5i,l,~-~,i-~,i-~)
BORDER=l
CALL PAINTT(A,BORDER,B)
END

PRESET sets the pixel defined by the current (x,y)
coordinates either ON or OFF.

Example

CALL PRESET(~)

----------llad1elhaeli----------

-1is-

Computer Graphics Operation Manual
TRS-BO®

Sample Program

~iH.0'.0' C PRESET EXAMPLE
.0'.0'2.0'.0' LOGICAL COLOR
~.0'3.0'.0' COLOR=l
~.0'4~.0' CALL GRPINI(~)
~.0'5.0'~ CALL CLS
~.0'6.0'~ C SET PIXEL TO ON
~~6~.0' CALL SETXY(3_0'_0',12~)
~.0'8~.0' CALL PRESET(COLOR)
~.0'9.0'.0' C TEST PIXEL WHETHER ON OR
~1.0'.0'.0' K=POINT(M)
~11.0'.0' 3~ WRITE (3,35)K
~12~~ 35 FORMAT ('2' ,'PIXEL VALUE
~13~.0' END

PSET
Sets Pixel ON/OFF

PSET sets the pixel defined by the current (~ 1 y)
coordinates either ON or OFF.

Example

CALL PSET(~)

OFF

IS',I4)

----------1tad1elhaell----------

-1.0'6-

-~

Computer Graphics Operation Manual
TRS-BO®

Sample Program

JJJJl,J,J C PSET EXAMPLE
,J,J2,J,J LOGICAL COLOR
,J,J3,J,J LOGICAL POINT
,J,J4,J,J COLOR=l
,J,J5,J,J CALL GRPINI(,l)
,J~6,J,J CALL CLS
,J,J7,J,J C SET PIXEL TO ON
,J,J8,J,J CALL SETXY(3~,l,12,l)
,J,J9,J,J CALL PSET(COLOR)
,Jl,J,J,J C TEST PIXEL WHETHER ON OR OFF
,lll,J,J K=POINT{M)
,ll 2,l,J WRITE (3,35)K
,ll 3,l,J 35 FORMAT ('2','PIXEL VALUE IS' ,I4)
,ll4,0,J END

POT
Puts Stored Array onto Screen

PUT takes a rectangular pixel area that has been stored by
GET and puts it on the screen at current x and y coordinates
set by calling SETXY.

Example

CALL PUT (V,l)

Sample Program (see GET)

----------1tad1elhaeli---------

-1~7-

Computer Graphics Operation Manual

-----------TRS-BO ® ----------

SCREEN
Selects Screen

SCREEN lets you select the proper screen.

Example

CALL SCREEN(~)

Sample Program

This example turns off the graphics display, draws a circle,
then turns on the graphics display. The circle is then
visible.

EXAMPLE FOR SCREEN
LOGICAL CMD
CMD=l
CALL GRPINI(~)
CALL CLS
CALL SCREEN(CMD)
CALL SETXY(3~~,12~)
CALL CIRCLE(l~~,l,~-~,~-~,~-~)
CALL PAINT(l,l)
DO 2~ I=l,l~~~~
CONTINUE
CMD=~
CALL SCREEN(CMD)
END

----------lladaelhaell----------

-1~8-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

SETXY
Sets Coordinates

SETXY sets and holds both current and previous X- and
Y-coordinates. When a new coordinate is given, it is
designated as the "current coordinate" and the last
coordinate is designated as the "previous coordinate." If a
new coordinate is specified, the "previous coordinate" is
lost and the "current coordinate" becomes the "previous
coordinate."

Example

CALL SETXY(lll,111)

~· Sample Program (see LINE)

SETXYR
Sets Relative Coordinates

SETXYR sets the current (~,y) coordinates relative to
the previously set (~,y) coordinates. For example, if
the "current" coordinates are (lll,lll>, CALL SETXYR(ll,11)
will set the "current" coordinates to (lll,111); the
"previous" coordinates will then be (lll,lll>.

Example

CALL SETXYRC3l,31)

---------- llad1elllaell----------

-119-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

Sample Program

9191~ni C DRAW TWO INTERSECTING CIRCLES
J:jjj29$ CALL GRPINI (1)

J:lj9$3j CALL CLS
jj9f4j CALL SETXY(l9$9$,19$j)
J:jjJ:jSj CALL CIRCLE(59$,l,9$.J:j,J:j.J:j,J:j.J:j)
J:jjJ:jGj C DRAW SECOND CIRCLE WITH CENTER 2j
J:jjJ:179$ C PIXELS TO THE RIGHT OF FIRST CIRCLE
9$9$9$8j CALL SETXYR(29$,~)
J:ljj99$ CALL CIRCLE(5~ 1 l,~.~,9f.~,~-~)
!Jjljj END

VIEW
Sets Viewport

VIEW draws viewports on your screen. Graphics is displayed
only in the last defined viewport.

The upper-left corner of viewport is read as (j,/J) (the
"relative origin") when creating items inside the viewport.
All the other coordinates are read relative to this origin.
However, the "absolute coordinates" of the viewport, as they
are actually defined on the Graphics Cartesian system, are
retained in memory and can be read using VIEW as a function.

----------1tad1elhaell----------

-11/J-

Computer Graphics Operation Manual
-----------TRS-80 ® ----------

Example

Sample Program

SAMPLE VIEW PROGRAM
LOGICAL COLOR,BORDER,K
INTEGER FVIEW
CALL GRPINI(l)
CALL CLS
SET UP VIEW PORT
COLOR=,0
BORDER=l
CALL VIEW(21,0,8,0,42,0,16,0,COLOR,BORDER)
DRAW MULTIPLE CIRCLES
CALL SETXY(l,05,4,0)
DO 2,0 I=l,0,15,0,1,0
CALL CIRCLE(I,1,,0.,0,,0.,0,,0)
CONTINUE
DISPLAY VIEWPORT COORDINATES
DO 4,0 I=l,4
K=I-1
J=FVIEW(K)
WRITE (3,35)!,J
FORMAT ('2','VIEW PORT COORDINATE ',14,' IS AT',14)
CONTINUE
PRINT EMPTY LINES
DO 6,0 I=l,6
WRITE (3, 5,0)
FORMAT ClHl)
CONTINUE
END

The following two descriptions are functions in the Graphics
Subroutine Library and must be declared as LOGICAL and
INTEGER, respectively, in any routine that uses them.

----------1tat11elhaell----------

-111-

Operation Manual Computer Graphics
-----------TRS-BO ® ----------

Functions

POINT
Reads Pixel Value at Current Coordinates

POINT returns the OFF/ON pixel value at current x and y
coordinate as specified by SETXY or SETXYR. If the point is
not in the current viewport, POINT returns -1.

Example

K=POINT(M)

Sample Program (see PSET)

FVIEW
Reads Viewport's Parameters

FVIEW returns the specified viewport parameter:
~=returns the left X-coordinate
1 = returns the left Y-coordinate
2 = returns the right X-coordinate
3 = returns the right Y-coordinate

Example

I=FVIEW(~)

----------lladlOlhaeli----------

-112-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

Sample Program (see VIEW)

---------- lladaelhaeli---------

-113-

Computer Graphics Operation Manual
----------TRS-BO ® ----------

5/ Programming the Graphics Board

The Graphics Board provides 64g X 24g byte addressable
pixels on a TRS-8g Model III. The Graphics Board contains
32K of screen RAM to store video data consisting of four
64K RAMs which are double accessed for 8 bytes of data.
Regular alphanumeric data is stored in the static RAM on
the Video Board. The Graphics Board uses separate hardware
to generate a 64g X 24g display, so only one screen may be
displayed at a time. If the video is switched from Text to
Graphics Screen very rapidly, the Video display may lose
horizontal/vertical synchronization.

I/O port mapping is used to read and write data to the
board. The Board is addressable at 8g-83 Hex.

There are four internal registers which can be written to
or read on the board. They are as follows:

1. X-Position

2. Y-Position

3. Data

4. Options

X-address (~ to 127) for data write
only. (~ to 79 for display.)
Y-address (~ to 255) for data write
only. (~ to 238 for display.)
Graphics data in "byte" form. Each
byte turns on or off 8 consecutive
horizontal dots.
8 flags which turn on or off the user
programmable options (Write only).

The I/O port mapping of the board is:

xi - X-Register Write. (8g)
xl - Y-Register Write. (81)
x2 - Video data read or write. (82)
x3 - Options write. (83)

where x denotes the upper nibble of the I/O boundary as
set by-the DIP Switches. They are set by the factory at
8gH.

The Graphics Board uses X-Y addressing to locate the start
of a Graphics data byte. The upper-left of the screen is
(~,~) while the lower-right is (~79,239). If the bit is a
1, the dot will be ON. For example, if you wanted to turn

----------- llad1elllaeli----------

-114-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

on the 5th dot on the top row, the registers would contain:
X POSITION=~, Y POSITION=~, DATA=(~~~~l~~~)=~8H. Note that
in calculating points to plot, the Y-position is correct
for a single dot. Only the X-position must be corrected to
compensate for the byte addressing. This can be
accomplished in a simple subroutine.

Line Drawing Options

There are two 8-bit counters which act as latches for the
X- and Y-address. You may select, through the options
register, if they are to automatically count after a read
or write to graphic memory. Also, the counters may
increment or decrement independently. These counters do not
count to their respective endpoints and reset. Instead,
they will overflow past displayable video addresses.
Therefore, the software should not allow the counters to go
past 79 and 239. However, these extra memory locations may
be used for data storage.

Examples

The following are brief examples on how to use the Graphics
Board.

Read the video byte at X=~, Y=~

XOR
OUT
OUT
IN

A
(8~H) , A
(81H),A
A,(82H)

;CLEAR A
;OUTPUT X ADDRESS
;OUTPUT Y ADDRESS
;READ VIDEO BYTE

Draw a line from X=~,Y=~ to X=639, Y=~ using the hardware
line drawing

LD B,79 ;B HAS CHARACTER COUNT
LD A,~BlH ;OPTIONS:INCREMENT X AFTER

;1~11~~~1 Binary
OU'l' (83H),A
XOR A
OUT (8~H),A ;OUT X ADDRESS STARTING
OUT (81H),A ;OUTPUT Y ADDRESS
LD A,~FFH ;LOAD A WITH ALL DOTS ON

LOOP OUT (82H),A ;OUTPUT" DOTS

WRITE

DJNZ LOOP ;OUTPUT NUMBER IN B REGISTER

--------- llad1olhaell---------

-115-

Computer Graphics
-----------TRS-BO ®

Operation Manual

===--====-===------

No.

1

2

3

4

5

6

7

Option

Options Programming

Description

GRAPHICS/ALPHA*

NOT USED

XREG DEC/INC*

YREG DEC/INC*

X CLK RD*

Y CLK RD*

X CLK WR*

Y CLK WR*

Turns graphics ON and OFF.
"l" turns graphics ON.

Selects whether X decrements
or increments.
decrement.

"l" selects

Selects whether Y decrements
or increments.
decrement.

"l" selects

If address clocking is
desired, a "B" clocks the X
address up or down AFTER a
Read depending on the status
of BIT 2.

If address clocking is
desired, a "I" clocks the Y
address up or down AFTER a
Read depending on the status
of BIT 3.

A "I" clocks AFTER a Write.

A "I" clocks AFTER a Wiite.

==
Table 9. Options Programming

---------- ltadaelhaeli----------

-116-

SERVICE POLICY
Radio Shack's nationwide network of service facilities provides quick, convenient,
and reliable repair services for all of its computer products, in most instances.
Warranty service will be performed in accordance with Radio Shack's Limited
Warranty. Non-warranty service will be provided at reasonable parts and labor
costs.

Because of the sensitivity of computer equipment, and the problems which can
result from improper servicing, the following limitations also apply to the services
offered by Radio Shack:

1 . If any of the warranty seals on any Radio Shack computer products are broken,
Radio Shack reserves the right to refuse to service the equipment or to void
any remaining warranty on the equipment.

2. If any Radio Shack computer equipment has been modified so that it is not
within manufacturer's specifications, including, but not limited to, the installation
of any non-Radio Shack parts, components, or replacement boards, then
Radio Shack reserves the right to refuse to service the equipment, void any
remaining warranty, remove and replace any non-Radio Shack part found in
the equipment, and perform whatever modifications are necessary to return
the equipment to original factory manufacturer's specifications.

3. The cost for the labor and parts required to return the Radio Shack computer
equipment to original manufacturer's specifications will be charged to the
customer in addition to the normal repair charge.

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

AUSTRALIA

91 KURRAJONG ROAD
MOUNT DRUITT, N.S.W. 2770

87 49382-03/83-SP
...

TANDY CORPORATION

BELGIUM

PARC INDUSTRIEL DE NANINNE
5140 NANINNE

U. K.

BILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

Printed in U.S.A .

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

Graphic Utilities Source Code Listings

.0'.0'1 ; GCLS -- Clear graphics screen

GCLS

.0'.0'2 ;

.0'.0'3

.0'.0'4

.0'.0'5
{tJ{tJ6
{tJ {tJ 7
.0'.0'8
.0'.0'9
.0'1.0'
.0'11
.0'12
.0'13
.0'14
.0'15
.0'16
,0'17
{tJ18
{tJ19
fiJ 2 fiJ
.0'21
{tJ22
.0'23
,0'24
.0'25
{tJ26
,0'27
{tJ28
,0'29
{tJ3,0'
{tJ31
{tJ32
{tJ33
{tJ34

OUTER

INNER

INCY
INCXY
X
y
WRITE
STATUS

PSECT
PUSH
PUSH
PUSH
CALL
LD
OUT
XOR
OUT
OUT
LD
LD
LD
OUT
DJNZ
LD
OUT
XOR
OUT
OUT
LD
OUT
XOR
LD
DJNZ
LD
OUT
POP
POP
POP
XOR
RET
EQU
EQU
EQU
EQU
EQU
EQU

.0'35
{tJ36
,0'37
{tJ38
{tJ39
.0'4.0'
,0'41 ;
{tJ42 ;
,0'43
,0'44
,045
,046

INITG --
;
INITG LD

OUT
LD

,0'F,0',0'{tJH
HL
DE
BC
INITG
A,INCY
(STATUS) ,A
A
(X) ,A
(Y) ,A
B,8,0'
C,B
B,239
(WRITE) ,A
INNER
A, INCXY
(STATUS) ,A
A
(WRITE),A
(y) ,A
A, INCY
(STATUS) ,A
A
B,C
OUTER
A,{tJFFH
(STATUS) ,A
BC
DE
HL
A

7,0H
3,0H
8,0'H
81H
82H
83H

;Save registers

;Set graphics status:
; Graphics off, waits off, inc Y

;Set X & Y address to ,0

;8,0 X addresses

;239 Y addresses. 24,0th done after loop •
;Zero graphics memory
;Go clear next Y
;Set status to inc X & Y after write

;and clear last (24,0th) Y address
;Set Y back to zero
;Reset status to inc Y only

;Go clear next X
;Set status to graphics, waits, no incs.

;Restore registers

;All done. Go back to caller.

Initialize Model III Graphics Board

A,l,0'H
(236),A
BC,15

;Turn on port

----------llad1e111aeli----------

-67-

Computer Graphics
TRS-BO®

Operation Manual

"~-... ,\

~47 LD HL,DATA
~48 LOOP LD A,B ;Program CRTC chip for 8~ by 24
~49 OUT <136) ,A
~5~ LD A, (HL)
~51 OUT (137),A
~52 INC HL
~53 INC B
~54 LD A,B
~55 CP C
~56 JR NZ,LOOP
~57 RET
~58 DATA DEFB 99
~59 DEFB 8~
~6~ DEFB 85
~61 DEFB 8
~62 DEFB 25
~63 DEFB 4
~64 DEFB 24
~65 DEFB 24
~66 DEFB ~
~67 DEFB 9
~68 DEFB ~
~69 DEFB ~
~7~ DEFB ~
~71 DEFB ~
~72 DEFB ~
~73 DEFB ~
~74 ;
~75 END GCLS

--------- llad1elhaell---------

-68-

Computer Graphics
TRS-BO®

Operation Manual

,~

.0.01 ; GRON Turn on graphics display with waits on

.0.02 ;

.0.03 PSECT ,0F,0,0,0H

.0.04 GRON CALL INITG

.0.05 LD A,,0FFH

.0fi16 OUT (STATUS) ,A

.0.07 XOR A
,J,08 RET
[i1[i19 STATUS EQU 83H
.01.0 .

I

,Jll ; INITG -- Initialize Model III Graphics Board
,012 .

I

[i113 INITG PUSH HL
,014 PUSH BC
[i115 PUSH AF
.016 LD A,l,JH
,017 OUT (236) ,A ;Turn on port
.018 LD BC,15
.019 LD HL,DATA
.02.0 LOOP LD A,B ;Program CRTC chip for 8,0 by 24
.021 OUT (136),A
.022 LD A,(HL)
.023 OUT (137),A
.024 INC HL

/~ ,025 INC B
,026 LD A,B
[i127 CP C
.028 JR NZ,LOOP
.02 9 POP AF
~3~ POP BC
[i131 POP HL
[i13 2 RET
,033 DATA DEFB 99
,034 DEFB 8~
,035 DEFB 85
.036 DEFB 8
[i137 DEFB 25
[i138 DEFB 4
[i139 DEFB 24
.0 4,0 DEFB 24
,041 DEFB fi1
[i142 DEFB 9
~43 DEFB fi1
,044 DEFB fi1
,045 DEFB fi1
,046 DEFB fi1
,047 DEFB fi1
,048 DEFB fi1
,049 ;

,,,--.

llad1e /haell

-69-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

~s~ END GRON

----------1tad1elhaell----------

-7~-

Computer Graphics Operation Manual
TRS-BO®

,~

,0,01 ; GROFF -- Turn graphics display off with waits off
,0,02 .

I

,0,03 PSECT ,0F,0,0,0H
,0,04 GROFF CALL INITG
,0,05 LD A,,0FCH
,0,06 OUT (STATUS) ,A
,0,07 XOR A
,0,08 RET
,0,09 STATUS EQU 83H
,01,0
,011 . INITG -- Initialize Model III Graphics Board I

,012 .
I

,013 INITG PUSH HL
,014 PUSH BC
,015 PUSH AF
,016 LD A,l,0H
,017 OUT (236),A ;Turn on port
,018 LD BC,15
,019 LD HL,DATA
,02,0 LOOP LD A,B ;Program CRTC chip for 8,0 by 24
,021 OUT (136),A
,022 LD A, (HL)
,023 OUT (137),A
,024 INC HL

/
,---, ,025 INC B

,026 LD A,B
,027 CP C
,028 JR NZ,LOOP
,029 POP AF
,03,0 POP BC
,031 POP HL
,032 RET
,033 DATA DEFB 99
,034 DEFB 8,0
,035 DEFB 85
,036 DEFB 8
,037 DEFB 25
,038 DEFB 4
,039 DEFB 24
,04,0 DEFB 24
,041 DEFB ,0
,042 DEFB 9
,043 DEFB ,0
,044 DEFB ,0
,045 DEFB ,0
,046 DEFB ,0
,047 DEFB ,0
,048 DEFB ,0
,049 ;

~

ltat110 /haeli

-71-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

END GROFF

---------- ltadlO/llaell----------

-72-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

g~n ; GSAVE -

GSAVE

gg2;
gg3
gg4
gg5
ii6
gg7
gga
ggg
gig
ill
g12
il3
il4
il5
il6
il7
g1a
il9
g2g
g21
g22
i23
i24
g25
i26
g27
g2a
i29 ;
g3g
g31
g32
g33
g34
g35
g36
g37
g3a
g39
g4g

NXTREC

g41
g42
g 43
g44
g45
i46
g47
g4a
g49

NGRPH

PSECT
PUSH
PUSH
PUSH
PUSH
PUSH
CALL
LD
LD
LD
LD
LDIR
POP
LD
CP
JP
LD
CALL
JP
LD
LD
LD
CALL
JP
XOR
LD

LD
OUT
XOR
OUT
OUT
LD
LD
LD
LD
LD
LD
IN
LD
INC
INC
LD
CP
JR
XOR
LD

Save graphics display to disk

gpgggH
HL
DE
BC
IY
HL
INITG

;Save registers

HL,DCBEE ;Zero DCB buffer
DE,DCBEE+l
BC,49
(HL) ,ggH

HL
A,gDH
(HL)
Z,ERROR
DE,DCBEE
441CH
NZ,BOMB
HL,BUFFER
DE,DCBEE
B,g
442gH
NZ,BOMB
A
(OPNFLG),A

A,gE3H
(STATUS) ,A
A
(X) ,A
(Y) ,A
E,A
D,8i
B,75
HL,BUFFER
C,B
B,g
A, (GRAPH)
(HL) ,A
HL
E
A,E
D

;Error if filespec not given

;Move filespec to DCB

;Open file

;Set flag: file is open

;status= inc X after read

;init X & Y to zero

;counter for X values
; ag x values
;75 disk records for entire screen

;256 bytes per record
;Get next graphics byte
; and put in buffer

NZ,EGRPH ;Same row?
A
E,A

----------1tad1e/haell----------

-73-

Computer Graphics Operation Manual

-----------TRS-B0 ® ----------

.05.0
,051
,052
,053
,054
,055
,056
,057
,058
,059
.06.0
,061
,062
,063
,064
,065
,066
,067
,068
,069
.07.0
,071

EGRPH

;
EXIT

OUT
LD
INC
LD
OUT
DJNZ
PUSH
LD
CALL
POP
JR
LD
DJNZ

CALL
LD
OUT
POP
POP
POP
POP
LD
CP
RET

,072
,073
,074 ;
,075 ;
,076
,077
,078
,079
,08.0
,081
,082;
,083 ;
,084 ;
,085
,086
,087
,088
,089
,09 .0
,091
,092
,093
,094
,095
,096
,097
,098

Subroutines
;
CLOSE LD

OR
RET
LD
JP

Error exits

.
' ERROR
;
BOMB

;
X
y
GRAPH
STATUS
EFLAG

LD

LD
LD
LD
RST
JP

EQU
EQU
EQU
EQU
DEFB

(X) ,A
A, (YPOS)
A
(YPOS) ,A
(Y) ,A
NGRPH
DE
DE,DCBEE
4439H
DE
NZ,BOMB
B,C
NXTREC

CLOSE
A,,0FFH
(STATUS) ,A
IY
BC
DE
HL
A, (EFLAG)
.0

A, (OPNFLG)
A
NZ
DE,DCBEE
4428H

A,47

(EFLAG) ,A
B,A
A,39
8
EXIT

8,0H
81H
82H
83H
.0

;Next row. Set X to zero

;Go get next graphics byte

;Write disk record

;Go fill buffer for next record

;Status= graphics, waits, no incs

;All done. Return to caller.

;Return if file not open

;Go close file

;Required Command Parameter Not Found

;Print "ERROR nn" message

----------llad1elhaeli----------

-74-

Computer Graphics
TRS-BO®

Operation Manual
~

g99 YPOS DEFB g
iii OPNFLG DEFB 1
1i1 DCBEE DEFS 5g
1i2 BUFFER DEFS 256
1g3 . INITG -- Initialize Model III Graphics Board ' 1g4 .

' 'lg5 INITG LD A,lgH
1g6 OUT (236),A ;Turn on port
1g7 LD BC,15
1i0 LO HL,OATA
1g9 LOOP LO A,B ;Program CRTC chip for 0g by 24
11g OUT (136) ,A
111 LD A, (HL)
112 OUT (137),A
113 INC HL
114 INC B
115 LD A,B
116 CP C
117 JR NZ,LOOP
118 RET
119 DATA OEFB 99
12i DEFB 0i
121 OEFB 85
122 DEFB 8

~ 123 DEFB 25
124 DEFB 4
125 DEFB 24
126 OEFB 24
127 DEFB g
128 DEFB 9
129 OEFB g
13g DEFB g
131 DEFB In
132 OEFB In
133 DEFB g
134 DEFB In
135 .

' 136 END GSAVE

----------1tad10/haeli----------

-75-

Operation Manual Computer Graphics
-----------TRS-B0 ® ----------

,0,01 ; GLOAD -
,0,02 ;
.0.03
.0.0 4
.0.05
.0.06
.0.07
.0.08
.0.09
.01.0
.011
,012
,013
,014
,015
,016
,017
,018
,019
.02.0
.021
,022
,023
,024
,025
,026
,027
,028
,029 ;
.03.0
,031
,032
,033
,034
,035
,036
,037
,038
,039
.04.0
,041
,042
,043
,044
,045
,046
,047
,048
,049

GLOAD

NXTREC

NGRPH

PSECT
PUSH
PUSH
PUSH
PUSH
PUSH
CALL
LD
LD
LD
LD
LDIR
POP
LD
CP
JR
LD
CALL
JR
LD
LD
LD
CALL
JP
XOR
LD

LD
OUT
XOR
OUT
OUT
LD
LD
LD
PUSH
LD
CALL
POP
JR
LD
LD
LD
LD
OUT
INC
INC

Save graphics display to disk

,0F,0,0,0H
HL
DE
BC
IY
HL
INITG

;Save registers

HL,DCBEE ;Zero DCB buffer
DE,DCBEE+l
BC,49
(HL) ,H

HL
A,,0DH
(HL)
Z,ERROR
DE,DCBEE
441CH
NZ,BOMB
HL,BUFFER
DE,DCBEE
B, ,0
4424H
NZ,BOMB
A
(OPNFLG) ,A

A, ,0B3H
(STATUS) ,A
A
CX) ,A
(Y) ,A
E,A
D,8,0
B,75
DE
DE,DCBEE
4436H
DE
NZ,BOMB
HL,BUFFER
C,B
B, ,0
A, (HL)
(GRAPH) ,A
HL
E

;Move filespec to DCB

;Open file

;Set flag: file is open

;status= inc X after write

;init X & Y to zero

;counter for X values
;8,0 X values
;75 disk records for entire screen

;Read record from disk

;256 bytes per record

----------llad1elhaell----------

-76-

Computer Graphics Operation Manual
-----------TRS-80 ® -----------

.05.0

.051

.052
,053
,054
,055
,056
,057
,05 8
.05 9
.06.0
,061
,062
,063
,064
,065
,066
,067
,068
,069
.07.0
,071

EGRPH

.
I

EXIT

LD
CP
JR
XOR
LD
OUT
LD
INC
LD
OUT
DJNZ
LD
DJNZ

CALL
LD
OUT
POP
POP
POP
POP
LD
CP
RET

Subroutines .
I

CLOSE LD
OR
RET
LD
JP

A,E
D
NZ,EGRPH
A
E,A
(X) ,A
A, (YPOS)
A
(YPOS) ,A
(Y) ,A
NGRPH
B,C
NXTREC

CLOSE
A,,0FFH
(STATUS) ,A
IY
BC
DE
HL
A, (EFLAG)
.0

A, (OPNFLG)
A
NZ
DE,DCBEE
4428H

,072
,073
.07 4 ;
,075 ;
,076
.077
,078
,079
.08.0
,081
,082;
,083 ;
.084
,085
,086
.08 7
,088
,089

Error exits .
I

ERROR
;
BOMB

.09.0
,091
,092 ;
,093
,094
,095
,096
.09 7
,098

X
y
GRAPH
STATUS
EFLAG
YPOS

LD

LD
LD
LD
RST
JP

EQU
EQU
EQU
EQU
DEFB
DEFB

A,47

(EFLAG) ,A
B,A
A,39
8
EXIT

8,0H
81H
82H
83H
.0
.0

;Sarne row?

;Next row. Set X to zero

;Go get next graphics byte

;Go read next disk record

;Status= graphics, waits, no incs.

;Return if file not open

;Go close file

;Required Command Parameter Not Found

;Print "ERROR nn" message

----------1tad10/haeli----------

-77-

Computer Graphics
TRS-BO®

Operation Manual

·~

~99 OPNFLG DEFB 1
lfa'~ DCBEE DEFS 5f1
lfa'l BUFFER DEFS 256
lfa'2 ;
1~3 ; INITG -- Initialize Model III Graphics Board
lf14 . ,
lfa'5 INITG LD A,l~H
lf16 OUT (236) ,A ;Turn on port
lf17 LD BC,15
lf18 LD HL,DATA
1~9 LOOP LD A,B ;Program CRTC chip for 8/i1 by 24
11~ OUT (136),A
111 LD A, (HL)
112 OUT (137),A
113 INC HL
114 INC B
115 LD A,B
116 CP C
117 JR NZ,LOOP
118 RET
119 DATA DEFB 99
12/i1 DEFB 8~
121 DEFB 85
122 DEFB 8
123 DEFB 25
124 DEFB 4
125 DEFB 24
126 DEFB 24
127 DEFB !i1
128 DEFB 9
129 DEFB ~
13/i1 DEFB ~
131 DEFB !i1
132 DEFB ~
133 DEFB ~
134 DEFB !i1
135 ;
136 END GLOAD

----------1tad1elhaeli----------
-78-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

,0,01
,0,02 ;
,0,03
,0i4
i,05
,0~6
,0,07

GPRINT

,0i8
,0~9
,01,0

GPRINT

i11
~12 ;
~13
,014
,015
,016
~17
,018
i19
,02~
,021
,022
~23
,024
,025
,026
~27
,028
,029
,03~
,031
,032
,033
,034
,035
,036
,037
,038
,039
,04i
,041
~42
,043
~44
,045
,046
,047
,048
,049

.
I

LOOPl

COLUMN

DECJ

PAST

PSECT
PUSH
PUSH
PUSH
PUSH
CALL
OR
OUT
CALL

XOR
OUT
LD
LD
LD
LD
LD
CALL

LD
LD
LD
DEC
OUT
LD
IN
AND
CALL

LD
PUSH
LD
INC
DEC
JR
RLC
JR
POP
OR
LD
INC
DJNZ

LD
INC
CP
CALL

Print graphics screen to graphics printer

~F,0,0,0H
HL
DE
BC
IX
INITG
,0DBH
(STATUS) ,A
INITBF

A
(X) ,A
(BPOS) ,A ;
(XLOC) ,A ;
HL,BGMODE
B,l
c,iDH
PRLINE

IX,BUFFER
B,24,0
A,B
A
(Y) ,A
HL,MASK
A, (GRAPH)
(HL)
PO,SET,0

HL,BPOS
BC
B, (HL)
B
B
Z,PAST
A
DECJ
BC
(IX)
(IX) ,A
IX
COLUMN

A, 7
(HL)
(HL)
Z,PRNDRS ;

;Save registers

;Output a Control byte to cause
; Y to automatically dee. on a read

;Set A to ,0
;Initialize the X position

" " bit position
" " " location counter

;Begin graphics print mode

;point IX at the printer buffer
;go through a whole column of bytes
;Put value in A and decrement
; so it can be put out as
; the Y position
;point HL at the mask byte
;input a graphics byte
;chop off all but proper bit
;if result is odd parity set bit~
; otherwise bit A is ,0
;point HL at the bit position
;save register B (for DJNZ loop)
;get count
;increment (in case it is~)
;move bit left BPOS number of times
;if done, move on ...
;move bit left one position
;repeat loop
;get loop counter back
;merge A with byte of printer buffer
;put merged result in buffer
;increment buffer pointer
;continue loop

;See if BPOS has gotten to 8.
; If it has (printer uses 7 bits)

print the buffer and reset
BPOS to ,0

---------- llad1elhaeli---------

-79-

Operation Manual Computer Graphics
-----------TRS-B0 ® ----------

LD
RRC
LD
CP
JR
LD
CP
JP
INC
LD
OUT
JR

HL,MASK
(HL)
A, 8,0H
(HL)
NZ,LOOPl
A, (XLOC)
79
Z,BYE
A
(XLOC) ,A
(X) ,A
LOOPl

;After getting a vertical row of bits
; rotate the mask right one position
;Check to see if its back to
; it's original value, if not

; go get another row of bits
;If so, get X pos (to increment it)

;Check to see if we are at the end •••

;otherwise increment the X counter
;and store it back

;also update the port value
;now go get another row of bits

·--

.05,0;

.051
,052
~53
.054
~55
~56
.057
,058
,059
.06.0
.061
,062
,063
.064
.065
.066
.067
~68
.069
,07.0
.071
.072
,073
.074
.075
f$76
.077
.078
.079
.08.0
.081
~82
,083
,084
.085
,086
.087
.088
,089
,09,0
,091
.092
,093
.094
,095
.096
.097
,098

,
SET,0

.
I

PRNDRS

.
I

INITBF

LD
RET

LD
LD
LD
CALL
XOR
LD

LD
LD
LD
LD
LD
LDIR
RET

A,l

HL,BUFFER
B,24,0
C,,0DH
PRLINE

;set A to binary ~.0.0.0 .0.0~1
; and return

;Set up the
; PRLINE call and
; send the buffer

A ;clear A
CBPOS),A ;reset bit position counter

HL,BUFFER
DE,BUFFER+l
BC,239
A,8,0H
(HL) ,A

;Initialize the printer buffer
; with all 8,0H

·--,
PRLINE EQU

LD
INC
CALL
DJNZ
LD
CALL
RET

$
A, (HL)
HL
3BH
PRLINE
A,C
3BH

;Print a line. HL==>line to print
;B =#characters to print
;C = EOL char (sent after line)
;HL, BC, AF, and DE used

·--,
BYE CALL

LD
LD
LD
CALL
POP
POP
POP

PRNDRS
HL,EGMODE
B,l
C,,0DH
PRLINE
IX
BC
DE

;End graphics print mode
;Restore registers

----------llad1elhaeli----------

-8,0-

Computer Graphics Operation Manual
TRS-BO®

r"
g99 POP HL
lfiJ'fiJ' XOR A
lfiJ'l RET
lfi3'2 X EQU 8flH
lfi3'3 y EQU 81H
lfi3'4 GRAPH EQU 82H
lfi3'5 STATUS EQU 83H
lfi3'6 MASK DEFB 8flH ;Mask to use in extracting bits
lfl7 BGMODE DEFB 12H ;Control byte: start graphics mode
lfi3'8 BUFFER DEFS 24fiJ' ;Printer data buffer
lfl9 EGMODE DEFB lEH ;Control byte: end graphics mode
llfl BPOS DEFB fl ;Bit position in printer buffer
111 XLOC DEFB g ;Current X location value
112 ;
113 ;
114 . INITG -- Initialize Model III Graphics Board I

115 .
I

116 INITG LD A,lfiJ'H
117 OUT (236) ,A ;Turn on port
118 LD BC,15
119 LD HL,DATA
12fiJ' LOOP LD A,B ;Program CRTC chip for 8fl by 24
121 OUT (136),A
122 LD A, (HL)
123 OUT (137) ,A ,---,,
124 INC HL
125 INC B
126 LD A,B
127 CP C
128 JR NZ,LOOP
129 RET
13fi3' DATA DEFB 99
131 DEFB 8fl
132 DEFB 85
132 DEFB 8
133 DEFB 25
134 DEFB 4
135 DEFB 24
136 DEFB 24
137 DEFB g
138 DEFB 9
139 DEFB fl
14i DEFB fl
141 DEFB g
142 DEFB fl
143 DEFB g
144 DEFB g
145 ;
146 END GPRINT

,~

ltadtelllaell

-81-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

NOTES

----------llad1elllaeli----------
-82-

Computer Graphics Operation Manual
TRS-BO® ,~

Jolllllll ;
Jo1111112

GPRT2 -- Print graphics X horizontal

Jo1111113 PSECT l1Ffol1l1H
111111114 GPRT2 PUSH HL
111111115 PUSH DE
Jo1111116 PUSH BC
Jo1111117 PUSH IX
Jo1111118 CALL INITG
Jo1111119 LD HL,BGMODE ;Turn on graphics print mode
Jolllllll LD B,l
Jollllll LD C,,0DH
Jolllll2 CALL PRLINE
follfol3 LD C ,,0 ;Graphics Y address
Jolllll 4 LD A,,0E3H
11111115 OUT (STATUS) ,A
Jolllll 6 .

I

Jolllll 7 NEWLN PUSH BC
11111118 LD HL,BUF ;Clear buffer
11111119 LD DE,BUF+l
111111211 LD BC,639
Jolll12l LD A,811H
Jollfo2 2 LD (HL) ,A
Jol1112 3 LDIR

,,--, Jol1112 4 ;
Jolll125 POP BC
Jol1112 6 LD D,l ;Bit in buf to set
11111127 ;
Jol1112 8 NEWRW LD A,C
11111129 OUT (Y) ,A ;Update Y address
1111113/o INC C
Jolll13l LD HL,BUF
Jolll132 XOR A
1111113 3 OUT (X) ,A ;Restart X address
1111113 4 LD B, 811 ;Get 811 graphics bytes
11111135 .

I

Jolll136 BYTE PUSH BC ;Save Y & loop counter
Jof1113 7 IN A, (GRAPH)
1111113 8 LD C,A ;Save graphics byte in C
1111113 9 LD E,811H ;Get bits left to right
Jollf1411 BIT LD A,C
Jof1114l AND E
11f11142 JR Z,OFFl
Joflll 4 3 LD A,D
Joflll 4 4 OR (HL)
Jofll145 LD (HL) ,A ;Set bit in buffer
J1Jof146 OFFl INC HL ;Next buffer byte
JoJlfo 4 7 SRL E ;Next bit

---------- ltadaelllaeli----------

-83-

Computer Graphics Operation Manual
TRS-BO®

/~

.0fHU8 JR NZ,BIT
,0gg49 POP BC
,0gg5g DJNZ BYTE
,0gg51 .

I

,0gg52 LD A, 24g
,0gg53 CP C ;Last Y address?
,0gg54 JR Z, DONE
,0,0g55 SLA D ;Next bit in buffer
,0g,0s6 JP P,NEWRW
,0gg57 ;
,0ggsa CALL PRINT ;Print buffer
ggg59 JR NEWLN
,0ggGg .

I

,0gg61 DONE CALL PRINT
,0gg62 LD A,,0FCH
,0gg63 OUT (STATUS) ,A
,0gg64 LD HL,EGMODE ;Turn off graphics print
,0ggGs LD B,l
,0gg66 LD C,,0DH
,0gg61 CALL PRLINE
,0gg68 POP IX
,0fi}'g69 POP BC
,0gg7g POP DE
,0gg71 POP HL
,0gg72 XOR A
,0g,073 RET
,0,0g74 .

I

,0gg75 PRINT PUSH BC
,0gg16 LD DE,,0 ;Offset for print buffer
,0gg77 PART LD HL,BUF
,0g,01a ADD HL,DE
,0,0g79 XOR A
,0gga,0 CP (HL) ;End of buffer?
gggai JR Z,EPRT
,0gga2 LD BC, (CTL)
,0gga3 CALL PRLINE
,0gga4 LD HL,214
,0ggas ADD HL,DE ;Next part of buffer
ggga6 EX DE,HL
,0gga1 JR PART
,0ggaa EPRT POP BC
,0gga9 RET
,0gg9,0 .

I

,0gg91 PRLINE EQU $;Print a line. HL==>line to print
,0gg92 PUSH DE
,0gg93 PRL2 LD A, (HL) ;B = # characters to print
,0gg94 INC HL ;C = EOL char (sent after line)
,0gg95 CALL 3BH ;HL, BC, AF, and DE used
ggg96 DJNZ PRL2

----------llad1elhaeli----------

-84-

Computer Graphics Operation Manual
TRS-BO®

~

ggg97 LD A,C
Jlf1Jl9 8 OR A
Jlf1[199 CALL NZ,3BH
Jlf1l/lf1 POP DE
,0[11[11 RET
,0[11[12 . ,
Jlf1lf13 ; INITG -- Initialize Model III Graphics Board
,0[11[14 . ,
,0[11[15 INITG LD A,lflH
fl/llf16 OUT (236) ,A ;Turn on port
flf1lfl7 LD BC,15
Jlfllf18 LD HL,DATA
flfllfl9 LOOP LD A,B ;Program CRTC chip for 8,0 by 24
Jl/lllfl OUT (136) ,A
/lfllll LD A, (HL)
flf1112 OUT (137),A
flf1113 INC HL
flf1114 INC B
Jlf1115 LD A,B
Jlf1116 CP C
flf1117 JR NZ,LOOP
Jlf1118 RET
/lf1119 DATA DEFB 99
,0[112[1 DEFB 8[1

~
flf1121 DEFB 85
,0[1122 DEFB 8
Jlf1l23 DEFB 25
,0[1124 DEFB 4
,0[1125 DEFB 24
,0[1126 DEFB 24
,0[1127 DEFB fl
,0[1128 DEFB 9
Jlf1l29 DEFB g
,0[113/l DEFB g
,0[1131 DEFB g
,0[1132 DEFB f1
flfll 3 3 DEFB g
fl[1l34 DEFB g
,0[1135 ;
flf1l36 BGMODE DEFB 12H
flf1137 EGMODE DEFB lEH
Jlfll 3 8 CTL DEFB f1 ;Print 214 char, followed by null
Jlfll 3 9 DEFB 214
,0[114/l BUF DEFS 64fl
,0[1141 DEFB g ;Filler
Jlf1l42 DEFB /lDH ;Carriage return
,0/ll43 DEFB g ;End of buffer signal
Jlfll44 X EQU 8/lH
,0[1145 y EQU 81H

~

lladae lllaeli

-85-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

~gl46 GRAPH EQU 82H
~g147 STATUS EQU 83H
~g14a ;
~g149 END GPRT2

-----------llad1elhaeli----------
-86-

Computer Graphics Operation Manual
----------TRS-BO ® ----------

GPRT3 -- Print graphics X horizontal double Y axis

GPRT3

;
NEWLN

. ,
NEWRW

NEWRl

;
BYTE

PSECT Jrl'F,0Jrl{J'H
PUSH HL
PUSH DE
PUSH BC
PUSH IX
CALL INITG
LD HL,BGMODE
LD B,l
LD C,,0DH
CALL PRLINE
LD C,,0
LD A,,0E3H
OUT (STATUS) ,A
LD D,3

PUSH
PUSH
LD
LD
LD
LD
LD
LDIR

POP
POP

LD
OUT
LD
CP
JR
INC
LD
XOR
OUT
LD
LD
CP
JR
LD

PUSH
IN
LD
LD

BC
DE
HL,BUF
DE,BUF+l
BC,639
A,8{J'H
(HL) ,A

DE
BC

A,C
(Y) ,A
A,4{J'H
D
Z,NEWRl
C
HL,BUF
A
(X) ,A
B,8{1
A, 4
D
NZ,BYTE
D,6

BC
A, (GRAPH)
C,A
E,8{J'H

;Turn on graphics print

;Graphics Y address

;Bit(s) in buf to set

;Clear buffer

;Update Y address

;If printing row second time
;Move to next row

;Restart X address
;Get 8Jrl' graphics bytes

;Save Y & loop counter

;Save graphics byte in C
;Get bits left to right

----------1tad1elllaeli----------

-87-

Computer Graphics Operation Manual
TRS-BO®

·~
.0flf14 9 BIT LO A,C
.0f1f1Sf,J AND E
flflf,151 JR Z,OFFl
.0f1f152 LO A,D
flf1f153 OR (HL)
flf1f15 4 LO (HL) ,A ;Set bit in buffer
flflf,155 OFFl INC HL ;Next buffer byte
flflf,JS 6 SRL E ;Next bit
flf1fl57 JR NZ,BIT
flflf,JS 8 POP BC
f1f1f159 DJNZ BYTE
fl fl f16 f1 ;
flflf,161 LO A,24fl
flflf,3'62 CP C ;Last Y address?
flflf,163 JR Z, DONE
.0flf164 SLA D ;Next bit in buffer
flflf,3'65 SLA D
flf1f166 JR Z,ENDRW
flflf,3'67 JP P,NEWRW
flflf,3'68 LO A,7FH
.0!1!169 AND D
flflf11f1 LO D,A
flflf,171 JR NZ,NEWRW
flflf,3'72 LO D,3
.0flf173 JR ENDR2
flf1f17 4 . ,
.0f1f175 ENDRW LO D,l
.0f1f176 ENDR2 PUSH DE
.0f1f177 CALL PRINT ;Print buffer
flflf,178 POP DE
.0f1f179 JR NEWLN
.0 fl f1 8 fl . ,
flflf,181 DONE CALL PRINT
flflf,3'82 LO A,flFCH
.0f1f183 OUT (STATUS) ,A
.0f1f184 LO HL,EGMODE ;Turn off graphics print
.0flf185 LO B,l
flf1fl86 LO C,flDH
.0f1f187 CALL PRLINE
flf1f188 POP IX
flflf,3'89 POP BC
.0f1f19fl POP DE
.0f1f191 POP HL
flf,Jf,192 XOR A
.0f1f193 RET
fl.0fl9 4 ;
.0!1!195 PRINT PUSH BC
flflf,3'96 LO DE,.0 ;Offset for print buffer
flflf,3'9 7 PART LO HL,BUF

----------ladlOlhaell----------

-88-

Computer Graphics

,....---... TRS-BO®
Operation Manual

jfi1{i198 ADD HL,DE
j{i1{i199 XOR A
jfiJlfiJj CP (HL) ;End of buffer?
fi1fi11{i11 JR Z,EPRT
jfi11fi12 LO C, (CTL)
jfi1l{i13 CALL PRLINE
j{i1lfi14 LO HL,214
jfiJl{iJS ADD HL,DE ;Next part of buffer
{i1{i1l{i16 EX DE,HL
j{i1lfi17 JR PART
fi1fi1lfi18 EPRT POP BC
j{i1l{i19 RET
jfiJll{iJ .

' jfiJlll PRLINE EQU $;Print a line. HL==>line to print
fi1fi1112 PUSH DE
fi1fi1113 PRL2 LD A, (HL) ;B = # characters to print
j{i1114 INC HL ;C = EOL char (sent after line)
j{i1115 CALL 3BH ;HL, BC, AF, and DE used
fi1{i1116 DJNZ PRL2
j{i1117 LO A,C
j{i1118 OR A
j{i1119 CALL NZ,3BH
fi1fi112fi1 POP DE
fi1fi1121 RET

~ j{i1122 .
I

j{i1123 ; INITG -- Initialize Model III Graphics Board
fi1{iJl24 .

I

j{i1125 INITG LO A, lfiJH
fi1{i1126 OUT (236),A ;Turn on port
fi1f,J'l2 7 LD BC,15
j{i1128 LO HL,DATA
j{i1129 LOOP LO A,B ;Program CRTC chip for 8fi1 by 24
j{i113{i1 OUT (136) ,A
fi1{i1131 LO A, (HL)
fi1{i1132 OUT (137),A
fi1fi1133 INC HL
j{i1134 INC B
jfiJl 3 5 LO A,B
j{i1136 CP C
fi1fi1137 JR NZ,LOOP
j{i1138 RET
j{i1139 DATA DEFB 99

---------- lladaelbaeli----------

-89-

Computer Graphics Operation Manual
TRS•BO® .~

.0111411 DEFB 811

.011141 DEFB 85

.011142 DEFB 8

.011143 DEFB 25

.011144 DEFB 4

.011145 DEFB 24

.011146 DEFB 24

.011147 DEFB .0

.011148 DEFB 9

.011149 DEFB .0

.01115.0 DEFB .0

.011151 DEFB .0

.011152 DEFB .0

.0.0153 DEFB .0

.01115 4 DEFB .0

.011155 ;

.011156 BGMODE DEFB 12H

.011157 EGMODE DEFB lEH

.011158 CTL DEFB .0

.0.0159 DEFB 214 ;Print 214 char, followed by null

.01116.0 BUF DEFS 64.0

.011161 DEFB .0 ;Filler

.011162 DEFB .0DH ;Carriage return

.011163 DEFB .0 ;End of buffer signal

.011164 X EQU 8,0H ~,

.011165 y EQU 81H

.01116 6 GRAPH EQU 82H

.01116 7 STATUS EQU 83H

.01116 8 . ,

.011169 END GPRT3

----------lladaelllaell----------

-911-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

Appendix A/ BASICG/Utilities Reference Summary

Argument ranges are indicated below by special letters and
words:

ar is a 3~ingle-precision floating point number > ~-~ (to
l* lfr > •
b is an integer expression of either fr or 1.
B specifies a box.
BF specifies a shaded box.
C is an integer expression of ~ or 1.
n is an integer expression from ~ to 2.
£ is an integer expression from ~ to 3.
r is an integer expression from ~ to 639.
X is an integer expression from ~ to 639.
Y.. is an integer expression from~ to 239.
action is either AND, PSET, PRESET, OR, or XOR.
background is a string of either fr or 1.
border is an integer expression of either fr or 1.
end is an expression from -6.283185 to 6.283185.
start is an expression from -6.283185 to 6.283185.
switch is an integer expression of fr or 1.
tiling is a string or an integer expression of ~ or
~ is an integer

CIRCLEC!.LY)r,c,start,end,ar
ellipse, semicircle, arc,

expression of fr or 1.

Draws a circle,
or point.

CIRCLE(lfrfr,lifr),25,1
CIRCLE(lfY~,lfYfY>,lfYfY,PI,2*PI,5

CIRCLE(l5f1,15f1),4fr,l,,,.6
CIRCLE(-5fY,-5fY),2fYfY

CLS Clears the Text Screen and video memory.
CLS SYSTEM"CLS"

CLR Clears the Graphics Screen.
CLR

GCLS Clears the Graphics Screen and memory.
GCLS CMD "I","GCLS" lfrfr CMD "I","GCLS"

1.

----------ltadtelllaeli----------

-117-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

GETCxl,yl>-cx2,y2> ,array name Reads the contents
of a rectangular pixel area into an array.
GET(lJ,lJ)-(5J,5J),V

GLOAD filename/ext.password:d Loads graphics
memory.
GLOAD PROG CMD "I","GLOAD PROG"

GLOCATE (~),direction Sets the Graphics Cursor
GLOCATE (32J,12~),j

GPRINT Dumps graphic display on the printer.
GPRINT CMD "I","GPRINT" lJJ CMD "I","GPRINT"

GPRT2 Dumps graphic display on the printer without
rotating 9J degrees.
GPRT2 CMD"I","GPRT2" lJJ CMD"I","GPRT2"

GPRT3 Dumps graphic display on the printer without
rotating 9J degrees.
GPRT3 CMD"I","GPRT3" lJJ CMD"I","GPRT3"

GROFF Turns Graphic Display OFF.
GROFF CMD "I","GROFF"

GRON Turns Graphic Display ON.
GRON CMD "I","GRON"

GSAVE filename/ext.password:d Saves graphics
memory.
GSAVE PROG CMD "I","GSAVE PROG"

LINE(!!..t.,Y!)-(x2,y2),£,B or BF, style
line/box.

Draws a

LINE -(lJJ,lJJ) LINE(lgJ,lgi)-(2Ji,2Ji),l,B,45
LINE(J,~)-(lJg,lJJ),l,BF LINE(-2gg,-2gJ)-(lJg,1gg)

PAINT(.!.LY_),tiling,border,background Paints the
screen.
PAINT(32J,12g),l,l PAINT(32g,12J),"DDDDD",l
PAINT(32g,12J),A$,l
PAINT(32g,12i),CHR$(J)+CHR$(&HFF),~,CHR$(&H~J)
PAINT(32J,12J),CHR$(E)+CHR$(77)+CHR$(3)

&POINT(~) A function. Tests graphics point.
PRINT &POINT(32J,12J) IF &POINT(32J,12i)=l THEN •..
PRINT &POINT(32J,12J),-l

PRESET(~),switch Sets pixel OFF or ON.

---------- llafl1elhaeli----------

-118-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

PRESET<l~~,1~~> ,~

PRINT i-3, item list Write text characters to the
Graphics Screen.
PRINT #-3,"MONTHLY"

PSET(~),switch Sets pixel ON or OFF.
PSET(l~~,l~~),l

PUT(xl,yl),array name,action
an array onto the screen.
PUT(l~~,l~~),A,PSET
PUT(A,B),B

Puts graphics from

PUT(l~~,l~~),A,AND

SCREEN~
SCREEN~

Selects the screen.

VIEW(xl,yl)-(x2,y2),£,b Redefines the screen and
creates a viewport.
VIEW(l~~,l~~)-(15~,15~) VIEW(l~~,l~~)-(15~,15~),~,l

&VIEW(£) A function. Returns viewport's coordinates.
PRINT & VIEW (1)

----------1tad1elllaell----------

-119-

Computer Graphics
----------TRS-BO ®

Operation Manual

Appendix B/ BASICG Error Messages

==
Code

1

3

5

7

Abbreviation

NF

RG

FC

OM

Explanation

NEXT without FOR. NEXT is used without
a matching FOR statement. This error
may also occur if NEXT variables are
reversed in a nested loop.

RETURN without GOSUB. A RETURN
statement was executed with insufficient
data available. The DATA statement may
have been left out or all data may have
been read.

Illegal function call. An attempt was
made to execute an operation using an
illegal parameter. Graphic examples:
PUTting a display that is partially off
the Screen, GETting an array that is not
properly dimensioned, or using more than
two OFF tiles or two ON tiles in a
string when tiling (with PAINT).

Out of memory. All available memory
has been used or reserved. This may
occur with large array dimensions and
nested branches such as GOSUB and

----------1tad1elllaeli----------

-12i-

Computer Graphics Operation Manual
-----------TRS-80 ® -----------

9 BS

11 /~

13 TM

15 LS

17 CN

FOR/NEXT loops.

Bad subscript. An attempt was made to
assign an array element with a subscript
beyond the dimensioned range.

Division by zero. An attempt was made
to use a value of zero in the
denominator. Note: If you can't find an
obvious division by zero, check for
division by numbers smaller than
allowable ranges (see OV).

Type mismatch. An attempt was made to
assign a number to a string variable or a
string to a numeric variable.

Long string. A string variable was
assigned a string which exceeded 255
characters in length.

Can't continue. A CONT command was given
at a point where the command can't be
carried out, e.g., directly after the
program has been edited.

----------rtad1elllaell----------

-121-

Computer Graphics Operation Manual

-----------TRS-BO ® ----------

19 NR

21 UE

23 BO

25-49 UE

51 IE

No RESUME. During an error-trapping
routine, BASICG has reached the end of
the program without encountering a
RESUME.

Undefined error. Reserved for future
use.

i~~-.:~pera:ntir: -
ted· .. w± thQi,:it::,'. ~.

t!~~;~9pe~!-~,,!;>;.;i._
Buffer overflow. An attempt was made
to input a data line which has too many
characters to be held in the line
buffer.

':Cn1~r;t~
-,•, .:• •' ~~ .. ··~,';

Undefined error. Reserved for future
use.

Internal error. Also indicates an
attempt to use EOF on a file which is not
open.

----------lladaelhaell----------

-122-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

53 FF

55 AO

57 UE

59 DF

61 RN

63 MM

fi:r'tte ... ··• n~mfje:ti:;:

: :~Jit :~;~-
.. -•}·-~·~t'.t~d ..• ·ui;f~:
... ,,,. :; i·~. ·<;. ..,., ' . ·,:

File ~ot found. Reference was made in a
LOAD, KILL or OPEN statement to a file
which did not exist on the diskette
specified .

. :·;\::~~:::'.!:;tedt~:~.t•
''i,j$;Jµenttai
• ',.·1•,•,.·:•',,,'

File already open. An attempt was made
to open a file that was already open.
This error is also output if KILL,
LOAD, SAVE, etc., is given for an open
file.

·· :·;;;_~_)fo -e,i:~c:,~r::·
'"":~fed·, 'dur in :· . ~:::::-.' "•'••· .. ' ''' '' Jf "••:•

Undefined in Model III BASIC.

Diskette full. All storage space on the
diskette has been used. KILL unneeded
files or use a formatted diskette which
has available space.

Bad record number. In a PUT or GET
statement, the record number is either
greater than the allowable maximum,
equal to zero, or negative.

Mode mismatch. A sequential OPEN was
executed for a file that already existed
on the diskette as a direct access file,
or vice versa.

----------1tad1elllaell----------

-123-

Computer Graphics
-----------TRS-BO ®

Operation Manual

64

66

UE

FL

Undefined error. Reserved for future
use.

Too many files.

==----

----------1tad1et11aell----------

-124-

Computer Graphics Operation Manual

-----------TRS-BO ® ----------

Appendix C/ Subroutine Language Reference Summary

CIRCLE Cradius,color,start,end,ar)
circle, ellipse, semicircle, arc,
(.!.L,Y) coordinates set by SETXY.

CALL CIRCLE(1gg,1,~,~,~)

CLS Clears the Graphics Screen.
CALL CLS

Draws a
or point.

FVIEW (n) Returns viewport parameter.
I=FVIEW(~)

GET (array,size) Reads the contents of a rectangular
pixel area into an array for future use by PUT.

CALL GET(A,4ggg)

GPRINT (size,array) Displays textual data.
CALL GPRINT (28,ARRAYl)

GRPINI(option) Graphics initialization routine.
CALL GRPINI(~)

LINE (color,style) Draws a line.
Coordinates set by SETXY or SETXYR.

CALL LINE (1,-1)

LINEB (color,style) Draws a box.
Coordinates set by SETXY or SETXYR.

CALL LINEB (1,-1)

LINEBF (color) Draws a filled box.
Coordinates set by SETXY or SETXYR.

CALL LINEBF (1)

LOCATE (n)
data. -

Sets the direction for displaying textual

CALL LOCATE(~)

PAINT (color,border)
CALL PAINT(l,l)

Paints the screen.

PAINTT CarrayT,border,arrayS)
with defined paint style.

Paints the screen

----------ltadaelllaeli----------

-125-

Computer Graphics Operation Manual
----------TRS-80 ® ----------

CALL PAINTT (A,l,V)

POINT Returns the pixel value at current coordinates.
K=POINT(M)

PRESET (color) Sets the pixel ON or OFF.
CALL PRESET(~)

PSET (color) Sets the pixel ON or OFF.
CALL PSET(~)

SCREEN(~) Sets the screen.
CALL SCREEN(l)

SETXY(X,Y) Sets the coordinates (absolute).
CALL SETXY(1ii,1ii>

SETXYR(X,Y) Sets the coordinates (relative).
CALL SETXYR(Si,Si)

VIEW(leftX,leftY,rightX,rightY,color,border)
Sets the viewport.

CALL VIEW(lii,lii,2gi,2gg,~,l)

----------llad1elllaeli----------

-126-

Computer Graphics Operation Manual
-----------TRS-80 ® ----------

Appendix D/ Sample Programs

BASICG

lfJ I

2fJ' Pie Graph Program ("PECANPIE/GRA")
3fJ I

4fJ I

5fJ I

6fJ I

7fJ I

ai I

9fJ I

lfJfJ I

Object
The object of this program is to draw a pie graph of
expenses for a given month of eight departments of a
along with the numerical value of each pie section
representation.

the
company,

llfJ 'Running the program
12fJ ' The month and the amounts spent by each department are input,
13fJ ' and the program takes over from there.
14fJ I

15fJ 'Special features
16fJ ' The amounts spent by each account as well as the total
17fJ' amount spent are stored in strings. The program will
18fJ ' standardize each string so that it is 9 characters long
19fJ ' and includes two characters to the right of the decimal
2fJfJ ' point. This allows for input of variable length and an
2lfJ' optional decimal point.
22fJ I

23fJ I

24fJ I

25fJ I

26fJ I

27fJ I

28fJ I

29fJ I

3fJfJ I

3lfJ '
32fJ I

33fJ I

34fJ I

35fJ I

36fJ I

3 7{J I

The various coordinates used in the program are found
based on the following equations:

X = r *
y = r *

cos(theta)
sin(theta)

where x and y
is the angle.
by ,0 • 5 • This
x pixels.)

are the coordinates, r is the radius, and theta
(Note: They-coordinates are always multiplied

is because they pixels are twice the size of the

If an angle theta is generated by a percent less than 1%, the
section is not graphed, and the next theta is calculated.
However, the number will still be listed under the key.

38{J 'Variables
39{J ' ACCT$(i)
4{J{J ' BUD$(i)

Description of the account
Amount spent by the account

----------1tad1elhaell----------

-127-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

41.0''
4 2.0' '
43.0' '
44.0' I

45.0''
46.0' '
47.0' I

48_0' I

49.0' I

5 .0' .0' I

51.0' I

5 2.0' I

53.0' I

5 4.0' I

55.0' I

56.0' I

57.0' I

58.0' I

59.0' I

6 .0' .0' I

61_0' I

OS$
HXCOL
HYRW
I
MN$
PER(i)
R
T,0'
Tl
TBUD$
THALF

TILE$(i)
TWOPI
X,0'

XP
Y,0'

YP

62.0' ' Set initial values
63.0' I

64,0' CLEAR 1,0',0',0'

Dollar sign (used in output)
Column number for the pie section number
Row number for the pie section number
Counter
Month
Percent value of BUD$(i)
Radius of circle
Angle value line to be drawn
Angle value of the next line
Total of all the BUD$(i) 's
Angle halfway between Tl and T.0' (used for
location position for section number)
Paint style for each section
Two times the value of pi
X-coordinate for drawing the line represented
by T,0'
X-coordinate for painting a section
Y-coordinate for drawing the line represented
by T,0'
Y-coordinate for painting a section

65,0' DIM THALF(l5),BUD$(15),ACCT$(15),PER(l6)
66,0' TWOPI=2*3.14159
6 7,0' R=l 8,0'
68.0' OS$="$"
69.0' ACCT$(!) = "Sales"
7.0'.0' ACCT$(2) = "Purchasing"
71.0' ACCT$(3) = "R&D 11

72.0' ACCT$(4) = "Accounting"
74.0' ACCT$(5) ="Advertising"
75.0' ACCT$(6) = "Utilities "
76.0' ACCT$(7) ="Security"
77.0' ACCT$(8) = "Expansion"
78,0' TILE$(,0')=CHR$(&H22)+CHR$(&H,0',0')
79,0' TILE$(l)=CHR$(&HFF)+CHR$(&H,0',0')
8,0',0' TILE$(2)=CHR$(&H99)+CHR$(&H66)
81,0' TILE$(3)=CHR$(&H99)
82,0' TILE$(4)=CHR$(&HFF)
83,0' TILE$(5)=CHR$(&HF,0')+CHR$(&HF,0')+CHR$(&H,0'F)+CHR$(&H,0'F)
84,0' TILE$(6)=CHR$(&H3C)+CHR$(&H3C)+CHR$(&HFF)
85,0' TILE$(7)=CHR$(&H,0'3)+CHR$(&H,0'C)+CHR$(&H3,0')+CHR$(&HC,0')
86.0' I

87.0' 'Enter values to be graphed, standardize them, and calculate
88.0' ' the percent they represent
89.0' I

--------- llad1elhaell---------

-128-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

911 CLR
911 CLS
921 SCREEN!
931 PRINT @64,"Enter month"
941 PRINT @192,"Enter amount spent by"
951 PRINT @256,"$"
961 PRINT @I,""
971 LINE INPUT "Enter month ";MN$
981 FOR I=l TO 8
991 PRINT @214,ACCT$(I);"
1111 PRINT @256,"$"
llll PRINT @192,""
1121 LINE INPUT "$";BUD$(I)
1131 IF INSTR(BUD$(I),".") = I THEN BUD$(I)=BUD$(I)+".II"
1141 IF LEN(BUD$(I))<9 THEN BUD$(I)=" "+BUD$(I):GOTO 1g4g
1151 TBUD$=STR$(VAL(TBUD$)+VAL(BUD$(I)))
ll6g NEXT I
1171 IF INSTR(TBUD$,".")=I THEN TBUD$=TBUD$+".II"
1181 IF LEN(TBUD$)<9 THEN TBUD$=" "+TBUD$:GOTO 118.
1191 FOR I=l TO 8
llgl PER(I)=VAL(BUD$(I))/VAL(TBUD$)*lgg
1111 NEXT I
1121 SCREENI
1131 I

1141 'Draw the circle and calculate the location of the lines and
1151' the line numbers
1161 I

1171 CIRCLE(4ll,12l),R
1181 FOR I=I TO 8
1191 Tl=TWOPI/lll*PER(I)+TI
1211 Xl=4ll+R*COS(T.)
1211 Yl=l2I-R*SIN(T.)*g.5
1221 Tl=TWOPI/1.l*PER(I+l)+TI
1231 THALF(I)=(T.+Tl)/2
1241 HXCOL=(4ll+R*l.15*COS(THALF(I)))
1251 HYRW=(l2I-R*l.15*SIN(THALF(I))*S.5)
1261 IF PER(I)>l THEN LINE (4lg,12l)-(Xl,Y.)
1271 GLOCATE (HXCOL,HYRW),.
1281 IF I<8 AND PER(I+l)>l THEN PRINT #-3,I+l
1291 NEXT I
1311 I

1311 'Paint the appropriate sections of the pie
1321 I

1331 FOR I=I TO 7
1341 XP=4ll+R* •. 5*COS(THALF(I))
1351 YP=l2I-R*l.5*SIN(THALF(I))*••5
1361 IF PER(I+l)<=l THEN 1381
137. PAINT (XP,YP),TILE$(I),1
1381 NEXT I

----------lladaolhaeli----------

-129-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

139,0' I

14,0',0' 'Print the key for the graph
141,0' I

142,0' GLOCATE(,0',1,0'),,0'
143,0' PRINT #-3,"Expenditures for"
144,0' GLOCATE(,0',25),,0'
145,0' PRINT #-3,MN$
146,0' GLOCATE(,0',4,0'),,0'
147,0' PRINT #-3,"# Description Amount"
148,0' FOR I=l TO 8
149,0' GLOCATE(,0',(4+I)*l5),,0'
15,0',0' PRINT #-3,I
151,0' GLOCATE(4,0',(4+I)*15),,0'
152,0' PRINT #-3,ACCT$(I)
153,0' GLOCATE(l3,0',(I+4)*15),,0'
154,0' PRINT #-3,DS$;BUD$(I)
155,0' DS$=" "
156,0' NEXT I
157,0' GLOCATE(,0',195),,0'
158,0' PRINT #-3,STRING$(26,"-")
159,0' GLOCATE(4,0',21,0'),,0'
16,0',0' PRINT #-3,"Total ";TBUD$
161,0' FOR I=l TO 1,0',0',0',0'
162,0' NEXT I
163,0' SCREENl
164,0' END

----------llad1elllaell----------

-13,0'-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

1g 1 "THREEDEE/GRA"
2g I

3j 'Object
4j' The object of this program is to produce a three
Si' dimensional bar graph representation of the gross
6j ' income for a company over a one year period.
7g I

ag 'Variables
9j' A Vertical alphanumeric character
1gg ' BMSG$ Bottom message
llj ' CHAR$ Disk file input field
12j' GI$ Gross income
13j' I Counter
14j' J Counter
lSj' MN$ Month
16j' REC Record number of vertical character
17j' Sl$ Single character of vertical message
18j ' TILE$ Tile pattern for painting
19j' TTINC Total income for the year
2gg ' X X-coordinate of bar
2lj' Y(i) Y-coordinate of bar
22j I

23j 'Input/output
24j' The program prompts you to enter the gross income, in millions.

/~ 2Sj 'for each month. The program requires these values to be between one
26j 'and nine.
27j I

28j 'Set initial values
29j I

3il CLS
3lj DIM Y(l2),A(8),MN$(12)
32j DEFINT A
33j VMSG$=" Millions of dollars"
34j TMSG$="G r o s s Income For l 9 8 j"
35j BMSG$="M on th"
36j MN$(l)="January"
37j MN$(2)="February"
38j MN$(3)="March"
39j MN$(4)="April"
4jj MN$(5)="May"
4lj MN$(6)="June"
42j MN$(7)="July"
43j MN$(8)="August"
44j MN$(9)="September"
45j MN$ (lj >= "October"
46j MN$ Cll)="November"
47j MN$(12)="December"
48j TILE$=CHR$(&H99)+CHR$(&H66)
49j X=-lj

----------lladNtlhaeli----------

-131-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------s,, I

511 'Input gross income, and calculate the Y-coordinate
521 I

531 FOR I=l TO 12
541 CLS
551 PRINT "Enter gross income in millions (1-9) for ";MN$(I)
561 LINE INPUT "$";GI$
57f Y(I)=2f5-2f*VAL(GI$)
58f TTINC=TTINC+VAL(GI$)
59f NEXT I
6ff CLR
611 SCREENf
621 I

631 'Draw the graph and bars
641 I

65f FOR I=l TO 12
661 CLS
67$J X=X+Sf
68f LINE (X,Y(I))-(X+2f,2f5),l,BF
69f LINE -(X+4f,195)
7$Jf LINE -(X+4f,Y(I)-lf)
71$J LINE -(X+2f,Y(I)-lf)
721 LINE -(X,Y(I))
73$J LINE (X+2f,Y(I))-(X+4f,Y(I)-lf)
741 PAINT(X+21,Y(I)+2),TILE$,l
75f NEXT I
761 GLOCATE{4f,215),$J
771 PRINT #-3,"Jan Feb Mar Apr May June July Aug
Nov Dec"
781 GLOCATE(29f,23f),.
79f PRINT #-3,BMSG$
8ff FOR I=l TO lf
8lf IF I>9 THEN C=l ELSE C=2
821 GLOCATE((C*l$J)-5,(2$J-I*2)*1f),$J
83f PRINT #-3,STR$(I);"-"
84f NEXT I
as, LINE (35,.)-(35,215)
86f LINE -(639,2f5)
87$J GLOCATEC.,18f),3
88$J PRINT #-3,VMSG$
89f GLOCATE(22f,.),.
9f• PRINT #-3,TMSG$
91. GLOCATE(26f,lf),.
921 PRINT #-3,"(Total income is";TTINC;" million)"
93. FOR I=l TO 11111
94$J NEXT I
95. SCREEN!
96j END

Sept Oct

----------llad1elhaeli----------

-132-

Computer Graphics Operation Manual
-----------TRS·BO ® ----------

Printing Graphics Displays

There are many ways to use the stand-alone utilities
(described in Graphic Utilities). The following discussion
demonstrates one way to use the utilities with graphic
displays generated under BASICG.

To print graphics, follow these steps:

1. When TRSDOS Ready appears, set FORMS to FORMS (WIDTH=255,
LINES=6i). (See your Model III Disk System Owner's
Manual.)

2. Set the printer into Graphic Mode, if possible, and set
the printer's other parameters (elongation, non-elongated,
etc.), if applicable, according to instructions in your
printer owner's manual.

3. Write, run and save your program as a BASICG program file.

4. Save the graphics memory to diskette using GSAVE.

5. Load the file into memory using GLOAD.

6. Enter the print command GPRINT.

Example

1. Set FORMS with your printer's printing parameters.

----------ltaf.llOlllaeli----------
-133-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

2. Load BASICG and type in this program:

5 SCREEN 11
111 DEFDBL Y
211 CLR
311 LINE (~ 1 12li1)-(64li1,12li1)
411 LINE (32li1,~)-(32li1,24li1)
511 FOR X=~ TO 6411
611 PI=3.141259
711 Xl=X/64li1*2*PI-PI
811 Y=SIN(Xl)*lllll
911 IF Y>lllll THEN X=X+7

11111 PSET (X,-Y+l2li1}
1111 NEXT X
1211 GLOCATE(~,~),~
1311 PRINT #-3,"THIS IS A SINE WAVE."

3. RUN the program.

The program draws a sine wave on the Graphics Screen
(graphics memory) and prints the statement in line 1311
("THIS IS A SINE WAVE.") on the Graphics Screen.

4. SINE (for sine wave) is the name we are giving this
TRSDOS file. To save the contents of the graphics
memory (which now includes the converted video memory)
to diskette, type: CMD"I","GSAVE SINE" <ENTER>.

5. The graphics memory is saved as a TRSDOS file on your
diskette and you will return to TRSDOS Ready.

6. Type: GCLS <ENTER>

The graphics memory is now cleared.

7. To load the file back into memory, type:

GLOAD SINE <ENTER>

The display is now on the Graphics Screen.

8. To print, type: GPRINT <ENTER>.

----------ltadlOlllaell---------

-134-

Computer Graphics Operation Manual
-----------TRS·BO ® ----------

FORTRAN Sample Programs

gg1gg C HIGH RESOLUTION GRAPHICS TEST~ MAIN PROGRAM
gg2gg C
iftOii CALL GRPINI{j)
gg4gg CALL SCREEN{i)
gg5gg C
ii6ii C CIRCLE TEST
gg7gg C
ggagg CALL CTEST
ggggg C
g1ggg C LINE TEST
g11gg C
g12gg CALL LTEST
g13gg C
g14gg C LINEB TEST
g1sgg C
jl6gg CALL LBTST
g17gg C
i1agg C LINEBF TEST
g19gg C

,--, g2ggg CALL LBFTST
g21gg C
g22gg C PAINTT TEST
g23gg C
g24gg CALL PTTTST
i2sgg C
j26jj C GET AND PUT TEST
g21gg C
i2agg CALL GPTST
g29gg C
g3ggg C PS ET/POINT TEST
g31gg C
g32gg CALL PPTST
g33gg C
g34gg C PRESET/POINT TEST
g35gg C
j36jj CALL PRETST
g37gg C
g3agg C SCREEN TEST
g39gg C
g4ggg CALL SCRTST
g41gg C
g42gg C VIEW/FVIEW TEST
g43gg C
g44gg CALL VTEST

~·.

ladlOlllaeli

-135-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

CALL CLS(2)
END

----------lladlOlhaeli----------

-136-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

SUBROUTINE CTEST

THIS SUBROUTINE TESTS CIRCLE, SETXY, AND PAINT

LOGICAL MSG(29)
CALL CLS
ENCODE(MSG,1,0',0')
FORMAT('TEST CIRCLE, SETXY, AND PAINT')
CALL SETXY(,0',,0')
CALL LOCATE(,0')
CALL GPRINT(29,MSG)
CALL WAIT
CALL VIEW(,0',3,0',639,239,,0',,0')
DO 1.0' I=l, 1,0',0'
IX=MOD(I*l7,64,0')
IY=MOD(I*l3,21,0')
IR=I*l.5
START=MOD(I,13)-6.,0'
END=MOD(I*3,13)-6.,0'
IF (START.LT.END) GOTO l
T=START
START=END
END=T
CONTINUE
RATIO=MOD(I*3,l,0',0')
IF (RATIO.GT.,0') RATIO=RATI0/4,0'.
CALL SETXY(IX,IY)
CALL CIRCLE(IR,l,START,END,RATIO)
CONTINUE

RANDOMLY FILL IN THE AREAS

DO 11 I=l,5,0'
IX=MOD(I*23,64,0')
IY=MOD(I*ll,21,0')
CALL SETXY(IX,IY)
CALL PAINTCl,1)
CONTINUE
CALL WAIT
CALL VIEW(,0',.0',639,239,-1,-l)
RETURN
END

---------- ltadlOlllaeli----------

-137-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

SUBROUTINE LTEST
C
C THIS ROUTINE EXERCISES LINE
C

LOGICAL MSG (19)
CALL CLS(g)
ENCODE(MSG,1gg)

1gg FORMAT('LINE AND PAINT TEST')
CALL SETXY(g,g)
CALL LOCATE(g)
CALL GPRINT(l9,MSG)
CALL WAIT
J=1gg
DO 1g I=l,639,2
CALL SETXY(I,15)
CALL SETXY(I,239)
CALL LINE(l,J)
J=J-1

lj CONTINUE

C

CALL WAIT
CALL VIEW(g,15,639,239,g,g)
CALL CLS

C DRAW WHITE LINES AND FILL IN RANDOMLY
C

IX=MOD(I*l9,639)
IY=MOD(I*l7,223)
CALL SETXY(IX,IY)
DO 11 I=l,lgj
IX=MOD(I*23,639)
IY=MOD(I*29,223)
CALL SETXY(IX,IY)
CALL LINE Cl ,-1)

11 CONTINUE
DO 12 I=l,Sg
IX=MOD(I*31,639)
IY=MOD(I*37,223)
CALL SETXY(IX,IY)
CALL PAINT(l,l)

12 CONTINUE
CALL WAIT

C
C WHITE OUT SCREEN, DRAW BLACK LINES, PAINT BLACK RANDOMLY
C

CALL VIEW(j,15,639,239,1,1)
DO 15 I=l,ljg
IX=MOD(I*ll,639)
IY=MOD(I*l3,223)
CALL SETXY(IX,IY)

----------llad1elhaeli----------

-138-

~··

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

CALL LINE(,0,-1)
CONTINUE
DO 16 I=l,5,0'
IX=MOD(I*l7,639)
IY=MOD(I*l9,223)
CALL SETXY(IX,IY)
CALL PAINT (,0', ,0')
CONTINUE
CALL WAIT
CALL VIEW(,0',,0,639,239,,0',,0')
RETURN
END

---------- llad1et11aell----------

-139-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

SUBROUTINE LBFTST

LINEBF TEST

LOGICAL MSG (11)
CALL CLS
ENCODE (MSG, HJ~)
FORMAT('LINEBF TEST')
CALL SETXY (fJ, ~)
CALL LOCATE(~)
CALL GPRINT(ll,MSG)
CALL WAIT
IXP=639
ICLR=l
DO 1~ IX=~,12~
CALL SETXY(IX*2,IX+3~)
CALL SETXY(IXP,IXP-4~~)
CALL LINEBF(ICLR)
IXP=IXP-3
ICLR=ICLR-1
IF (ICLR.LT.~) ICLR=l
CONTINUE
CALL WAIT
RETURN
END

----------lad1elhaeli----------

-14~-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

SUBROUTINE PTTTST

PAINT WITH TILES TEST

LOGICAL A(65),B(4),IS(l6),MSG(23)
DATA A(l)/8/
X
DATA A(2),A{3),A(4),A{5)/X'41',X'22',X'l4',X'i8'/
DATA A (6) , A (7) , A (8) , A (9) /X ' 14 ' , X ' 2 2 ' , X ' 41 ' , X ' g g ' /
FINE HORIZONTAL LINES
DATA A(lj),A(ll),A(l2)/2,X'FF',X'ii'/
MEDIUM HORIZONTAL LINES
DATA A(l3)/4/
DATA A(l4),A(l5),A(l6),A(l7)/X'FF',X'FF',X'ii',X'ii'/
DIAGONAL LINES
DATA A(l8)/4/
DATA A(l9) ,A(2i) ,A(21) ,A(22)/X'i3' ,x•gc• ,X'31' ,X'Cf'/
LEFT TO RIGHT DIAGONALS
DATA A(23)/4/
DATA A(24),A(25),A(26),A(27)/X'Cf',X'3f',X'fC',X'f3'/
FINE VERTICAL LINES
DATA A(28),A(29)/l,X'AA'/
MEDIUM VERTICAL LINES
DATA A(3j),A(31)/l,X'CC'/
COARSE VERTICAL LINES
DATA A(32),A(33)/l,X'Ff'/
ONE PIXEL DOTS
DATA A(34),A(35),A{36)/2,X'22',X'gj•/
TWO PIXEL DOTS
DATA A(37),A(38),A(39)/2,X'99',X'66'/
PLUSES
DATA A (4 g) , A (41) , A (4 2) , A (4 3) / 3 , X ' 3 C ' , X ' 3 C ' , X ' FF ' /
SOLID
DATA A(44),A(45)/l,X'FF'/
BROAD CROSS HATCH
DATA A(46),A(47),A(48),A(49)/3,X'92',X'92',X'FF'/
THICK CROSS HATCH
DATA A(5$:0/4/
DATA A(51),A(52),A(53),A(54)/X'FF',X'FF' ,X'DB',X'DB'/
FINE CROSS HATCH
DATA A(54),A(55),A{56)/2,X'92' ,X'FF'/
ALTERNATING PIXELS
DATA A(57),A(58),A(59)/2,X'55',X'AA'/
DATA B(l),B{2),B{3),B(4)/l,f,l,X'FF'/
DATA IS(l),IS(2),IS(3),IS(4),IS{5),IS{6)/l,lg,13,1a,23,2a/
DATA IS(7),IS(8),IS(9),IS(lg),IS(ll)/3j,32,34,37,4f/
DATA IS(l2),IS(l3),IS(l4),IS(l5),IS(l6)/44,46,5j,54,57/
CALL CLS
ENCODE(MSG,1gg)

---------- ltadaelllaeli----------

-141-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

FORMATC 'PAINTT AND SETXYR TESTS')
CALL SETXY(,,,)
CALL LOCATE(,)
CALL GPRINT(23,MSG)
CALL WAIT

PAINT ON A BLACK BACKGROUND

DO 1, I=l,16
CALL SETXY(,,4,)
CALL SETXYR(639,199)
CALL LINEB(l,-1)
CALL SETXYR(-3gg,-1gg)
ITMP=IS(I)
CALL PAINTT(A(ITMP),l,B)
CALL WAIT
CALL VIEW(,,4g,639,239,~,~)
CALL VIEW(g,~,639,239,-1,-1)
CONTINUE

PAINT ON A WHITE BACKGROUND

DO 11 I=l,16
IF(I.EQ.12) GOTO 11
CALL VIEW(,,4g,639,239,~,~)
CALL VIEW(~,~,639,239,-1,-1)
CALL SETXY(~,4g)
CALL SETXYR(639,199)
CALL LINEBF(l)
CALL SETXYR(-3gg,-1gg)
ITMP=IS(I)
CALL PAINTT(A(ITMP),~,B(3))
CALL WAIT
CONTINUE
RETURN
END

----------llad1elhaeli----------

-142-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

SUBROUTINE GPTST

GET AND PUT TEST

LOGICAL A(ljjj),MSG(l6)
CALL CLS
ENCODE(MSG,ljj)
FORMAT('GET AND PUT TEST')
CALL SETXY(j,j)
CALL LOCATE(j)
CALL GPRINT(16,MSG)
CALL VIEW(j,3j,639,239,~,~)
CALL SETXY(ljj,ljj)
CALL SETXYR(3j,3j)
CALL LINEBF(l)
CALL GET(A,ljjj)
CALL CLS
CALL WAIT
CALL SETXY(ljj,ljj)
CALL PUT(A,l)
CALL WAIT
CALL VIEW(j,~,639,239,~,-l)
RETURN
END

---------- llad1elhaell----------

-143-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

SUBROUTINE PPTST

PSET AND POINT TEST

LOGICAL POINT,MSG(21)
CALL CLS
ENCODE(MSG,1,0',0')
FORMAT('PSET AND POINT TEST')
CALL SETXY(,0',,0)
CALL LOCATE{,0')
CALL GPRINT(l9,MSG)
CALL WAIT
CALL CLS

SET AND CHECK ALL PIXELS

DO 1,0' I=,0,639
DO 11 J=,0,239
CALL SETXY(I,J)
CALL PSET(l)
K=POINT(L)
IF(K.EQ.,0) GOTO 999
CONTINUE
CONTINUE

RESET AND CHECK ALL PIXELS

DO 12 I=,0,639
DO 13 J=,0,239
CALL SETXY(I,J)
CALL PSET(,0)
K=POINT{L)
IF (K.EQ.l) GOTO 999
CONTINUE
CONTINUE
CALL CLS
ENCODE(MSG,1,0'1)
FORMAT('PSET AND POINT PASSED')
CALL SETXY(,0',,0)
CALL LOCATE{,0')
CALL GPRINT(21,MSG)
GOTO 1,0',0,0'
CALL CLS
ENCODE(MSG,1,0'2)
FORMAT('PSET AND POINT FAILED')
CALL SETXY(,0,,0)
CALL LOCATE{,0')
CALL GPRINT(21,MSG)
CALL WAIT

----------llad1elhaeli----------

-144-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

RETURN
END

---------- llad1elhaeli----------

-145-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

SUBROUTINE PRETST

PRESE'r AND POINT TEST

LOGICAL POINT,MSG(23)
CALL CLS
ENCODE(MSG,1,0,0)
FORMAT('PRESET AND POINT TEST')
CALL SETXY(,0,,0)
CALL LOCATE(,0)
CALL GPRINT(23,MSG)
CALL WAIT
CALL CLS

SET AND CHECK ALL PIXELS

DO 1,0 I=,0,639
DO 11 J=,0,239
CALL SETXY(I,J)
CALL PRESET(l)
K=POINT(L)
IF(K.EQ.,0) GOTO 999
CONTINUE
CONTINUE

RESET AND CHECK ALL PIXELS

DO 12 I=,0,639
DO 13 J=,0,239
CALL SETXY(I,J)
CALL PRESET(,0)
K=POINT(L)
IF (K.EQ.l) GOTO 999
CONTINUE
CONTINUE
CALL CLS
ENCODE(MSG,1_0'1)
FORMAT('PRESET AND POINT PASSED')
CALL SETXY(,0,,0)
CALL LOCATE(,0)
CALL GPRINT(23,MSG)
GOTO 1_0',0,0
CALL CLS
ENCODE(MSG,1,02)
FORMAT('PRESET AND POINT FAILED')
CALL SETXY(,0',,0)
CALL LOCATE(,0)
CALL GPRINT(23,MSG)
CALL WAIT

----------llad1elllaell----------

-146-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

RETURN
END

---------- ltadlOlllaeli----------

-147-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

SUBROUTINE SCRTST

SCREEN TEST

LOGICAL MSG (11)
CALL CLS
ENCODE (MSG, 1ii)
FORMAT('SCREEN TEST')
CALL SETXY(i,~>
CALL LOCATE(,)
CALL GPRINT(ll,MSG)
CALL WAIT
CALL SETXY(3ii,12i>
CALL CIRCLE(l,~,l,~.~,6.28,~.5)
CALL CIRCLE(l~~,l,~.~,6.28,~.25)
CALL CIRCLE(S~,l,~.,,6.28,,.5)
CALL PAINT Cl, 1)

GRAPHICS SCREEN

CALL SCREEN(~)
CALL WAIT
CALL WAIT
CALL WAIT

TEXT SCREEN

CALL SCREEN(l)
CALL WAIT
CALL WAIT
CALL WAIT

GRAPHICS SCREEN

CALL SCREEN(,)
CALL WAIT
CALL WAIT
CALL WAIT
RETURN
END

----------ltadlOlhaeli----------

-148-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

suBROUTINE VTEST

VIEW AND FVIEW TEST

INTEGER FVIEW
LOGICAL MSGC19)
CALL CLS
ENCODE(MSG,lii>
FORMAT('VIEW AND FVIEW TEST')
CALL SETXY(i,~)
CALL LOCATE(i)
CALL GPRINT(l9,MSG)
CALL WAIT

DRAW VIEWPORT AND CIRCLES

CALL VIEW(i,4i,639,239,~,l)
CALL DCIRCL(l)

DRAW VIEWPORT AND LINES

CALL VIEW(2i,Si,619,229,l,i)
CALL DLINE(i)

DRAW VIEWPORT AND CIRCLES

CALL VIEW(4i,6i,599,2i9,i,i)
CALL DCIRCL(l)

DRAW VIEWPORT AND LINES

CALL VIEW(6i,7i,579,199,l,l)
CALL DLINE(i)

CLEAR SCREEN

IXl=FVIEW(i)
IYl=FVIEW (1)

IX2=FVIEW(2)
IY2=FVIEW(3)
CALL VIEW(6i-IX1,7i-IY1,6i+IX2,4i+IY2,~,l)
CALL CLS
RETURN
END

----------llad1elhaeli----------

-149-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

g45gg
g4Ggg
g471Jg
g4a1Jg
g49gg 1g
gsggg
gs11Jg
gs2gg

g53gg
g54gg
/JSS!Jg
/J56/J/J
g571Jg
gsaJJg 11
g59g1J
g6gg!J
gGlgfJ

SUBROUTINE DCIRCL(ICLR)
CALL SETXY(1gg,11Jg)
DO 1/J I=s,3gg,s
CALL CIRCLE(I,ICLR,/J./J,6.28,/J.5)
CONTINUE
CALL WAIT
RETURN
END

SUBROUTINE DLINE(ICLR)
DO 11 I=2,2gg,4
CALL SETXYC-li,-li)
CALL SETXY(I+2ii,I)
CALL LINE(ICLR,-1)
CONTINUE
CALL WAIT
RETURN
END

---------- llad1elhaell----------

-15/J-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

SUBROUTINE WAIT

THIS SUBROUTINE INTRODUCES A TIME DELAY

DO 11 J=l,20'
DO li I=l,10'0'0'0'
CONTINUE
CONTINUE
RETURN
END

----------1tad1elhaell----------

-151-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

Appendix E/ Base Conversion Chart

DEC. HEX. BINARY DEC. HEX. BINAHY
--------------------- ---------------------

0 (2)(2) (2)(2)00(2)(2)(2)0 40 28 12)(2)1(2)10(2)(2)
1 (2'11 000000(2'11 il-1 29 0010112)(2)1
~· 12r-:• ,:. 0000001 (2) 4·-, .,:: 2A (2'10101010
3 03 00000011 43 2B 00101011
4 04 0 0 0 0 0 1 12Hll 44 ::c 00101100
5 05 00000101 45 2D (2)0101101
6 06 0000011 0 if6 2E 00101110
7 07 (2'1(2)0(2'10111 if 7 2F 00101111
8 08 (2) 0 0 0 1 (2) 0 0 48 30 0 0 1 1 0 0 0 0
9 09 (2)012)(2) 1 001 49 31 (2)(2'1110001

10 0A 0000 1 010 50 3·-:, 00110010 ,:.

1 1 0B 0000101 1 51 33 (2'10110011 1 .-, ..::. 0C 0 0 0 0 1 1 0 0 cc,·-, -· .,::. 34 00110100
13 0D (2)(2'1(2)01101 53 35 00110101
14 0E 00001110 :,4 36 00110110
15 0F 00001111 55 37 00110111 ~. 16 10 0 0 0 1 0 0 0 0 56 38 00111000
17 1 1 000 1 0001 57 39 00111001
18 12 0001 001 0 58 3A 00111010
19 13 00010011 59 3B 00111011
20 14 00010100 60 JC 00111100
21 15 00010101 61 3D 00111101
:2~2 16 00010110 t. ·-:• 3E 00111110 •..:..
23 17 00010111 63 3F 00 1 1 11 1 1
24 18 00011000 64 40 01000000
25 19 00011001 65 41 01000001
26 1A 0001101 0 66 42 01 0000 1 0
27 1B 00011011 67 43 01 0000 11
28 1C 00011100 68 44 01000100
29 1D 00011101 69 45 01000101
30 1E 00011110 70 46 01000110
31 1F 00011111 71 47 01000111
32 20 00100000 7·-· ..::. 48 01001000
33 21 00100001 73 49 01001001
34 22 00100010 74 4A 01001010
35 23 00100011 75 4B 01001011
36 24 00100100 -,6 4C 01001100
37 25 00100101 71 4D 01001101
38 26 00100110 78 4E 01001110
39 27 00100111 79 4F 01001111

·~

llad1e lllaell

-152-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

DEC. HEX. BINARY DEC. HEX. BINARY
--------------------- ---------------------

80 50 01010000 120 78 01111000
81 51 01010001 121 79 01111001
82 52 01010010 122 7A 01111010
83 53 01010011 123 7B 01111011
84 54 01010100 124 7C 0'1111100
85 55 01010101 125 7D 01111101
86 56 01010110 126 7E 01111110
87 57 01010111 127 7F 01111111
88 58 01011000 128 80 10000000
89 59 01011001 129 81 10000001
90 SA 01011010 130 82 10000010
91 SB 01011011 131 83 10000011
92 5C 01011100 132 84 1012)00100
93 5D 01011101 133 85 10000101
94 SE 01011110 134 86 10000110
95 SF 01011111 135 87 10000111
96 60 01100000 136 88 10001000
97 61 01100001 137 89 10001001
98 62 01100010 138 BA 10001010
99 63 01100011 139 BB 10001011

100 64 01100100 140 BC 10001100
101 65 01100101 141 80 10001101
102 66 01100110 142 SE 10001110
103 67 01100111 143 BF 10001111
104 68 01101000 144 90 10010000
105 69 01101001 145 91 10010001
106 6A 01101010 146 92 10010010
107 6B 01101011 147 93 10010011
108 6C 01101100 148 94 10010100
109 6D 01101101 149 95 10010101
110 6E 01101110 150 96 10010110
1 1 1 6F 01101111 151 97 10010111
112 70 01110000 152 98 10011000
113 71 01110001 153 99 10011001
114 72 01110010 154 9A 10011010
115 73 01110011 155 9B 10011011
116 74 01110100 156 9C 10011100
117 75 01110101 157 9D 10011101
118 76 01110110 158 9E 10011110
119 77 01110111 159 9F 10011111

----------1tad1elhaell----------

-153-

Operation Manual
-----------TRS-BO ® ----------

Computer Graphics

DEC. HEX. BINARY DEC. HEX. BINARY
--------------------- ---------------------
160 A0 10100000 200 cs 11001000
161 A1 10100001 201 C9 11 001001
162 A2 1 0 1 00010 202 CA 11 0010 1 0
163 A3 10100011 203 CB 11001011
164 A4 10100100 204 cc 11001100
165 AS 10100101 205 CD 11001101
166 A6 10100110 206 CE 11001110
167 A7 10100111 207 CF 11001111
168 AB 10101000 208 D0 11010000
169 A9 10101001 209 D1 11 01 000 1
170 AA 10101010 210 D2 11010010
171 AB 10101011 211 D3 11010011
172 AC 10101100 212 D4 11010100
173 AD 10101101 213 D5 11010101
174 AE 10101110 214 D6 11010110
175 AF 10101111 215 D7 11010111
176 80 10110000 216 DB 11011000
177 81 10110001 217 D9 11011001
178 e.2 10110010 218 DA 11011010
179 83 10110011 219 DB 11011011
180 84 10110100 220 DC 11011100
181 85 10110101 221 DD 11011101
182 86 10110110 222 DE 11011110
183 87 10110111 223 DF 11011111
184 BB 10111000 224 E0 11100000
185 89 10111001 225 El 11100001
186 BA 10111010 226 E·-, .,,;. 11100010
187 BB 10111011 227 E3 11100011
188 BC 10111100 228 E4 11100100
189 BO 10111101 229 ES 11100101
190 BE 10111110 230 E6 11100110
191 BF 10111111 231 E7 11100111
192 C0 11000000 232 EB 11101000
193 C1 11000001 233 E9 11101001
194 C2 11000010 234 EA 11101010
195 C3 11000011 235 EB 11101011
196 C4 11000100 236 EC 11101100
197 cs 11000101 237 ED 11101101
198 Cb 11000110 238 EE 11101110
199 C7 11000111 239 EF 11101111

----------llad1elhaell----------

-154-

Computer Graphics Operation Manual
-----------TRS-B0 ® ----------

DEC. HEX. BINARY

240 F0 11110000
241 Fl 11110001
242 F·-:• 11110010
243 F3 11110011
244 F4 11110100
245 F5 11110101
246 F6 11110110
247 F7 11110111
248 FB 11111000
249 F9 11111001
250 FA 11111010
251 FB 11111011
252 FC 11111100
253 FD 11111101
254 FE 11111110
255 FF 1 1 1 1 1 1 1 1

,,--

----------ltadaelhaeli----------

-155-

Computer Graphics Operation Manual
-----------TRS-80 ® ----------

Appendix F/ Pixel Grid Reference

The following hexadecimal numbers include commonly used
tiling designs.

Important Note: You cannot use more than two empty rows of
tiles when tiling or you'll get an Illegal Function Call
error.

Example (four rows of empty tiles):

CHR$(&HFF)+CHR$(&HFF)+CHR$(&H~~)+CHR$(&H~~)+CHR$(&H~~)+CHR$(&H~~)

gives you an Illegal Function Call error.

1. "X"

CHR$(&H4l)+CHR$(&H22)+CHR$(&Hl4)+CHR$(&H~8)+CHR$(&Hl4)
+CHR$(&H22)+CHR$(&H4l)+CHR$(&H~~)

Hex Decimal

~ 1 ~ ~ ~ ~ ~ 1 41 65

~ ~ 1 ~ ~ ~ 1 ~ 22 34

~ ~ ~ 1 ~ 1 ~ ~ 14 2~

~ ~ ~ ~ 1 ~ ~ ~ ~8 8

~ ~ ~ 1 ~ 1 ~ ~ 14 2~

~ ~ 1 ~ ~ ~ 1 ~ 22 34

~ 1 ~ ~ ~ ~ ~ 1 41 65

~ ~ ~ ~ ~ ~ ~ ~ ~~ 0

----------llad1elllaeli----------

-156-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

2. "Fine" horizontal lines

CHR$(&HFF)+CHR$(&H~,)

3. "Medium" horizontal lines

CHR$(&HFF)+CHR$(&HFF)+CHR$(&H~i)+CHR$(&H~,)

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 , ~ , ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ,

Hex Decimal

255

~

Hex Decimal

FF 255

FF 255

~, ~

~, ~

---------- llat11elhaeli----------

-157-

Computer Graphics Operation Manual

-----------TRS-BO ® ----------

4. Diagonal lines

(Right to left):
CHR$(&H~3)+CHR$(&H~C)+CHR$(&H3~)+CHR$(&HC~)

~ ~ ~ ~ ~ ~ 1 1

~ ~ ~ ~ 1 1 ~ ~

~ ~ 1 1 ~ ~ ~ ~

1 1 ~ ~ ~ ~ ~ ~

(Left to right)
CHR$(&HC~)+CHR$(&H3~)+CHR$(&H~C)+CHR$(&H~3)

1 1 ~ ~ ~ ~ ~ ~

~ ~ 1 1 ~ ~ ~ ,
~ ~ ~ ~ 1 1 , ~

~ , , ,, , ,, 1 1

5. "Fine" vertical lines

CHR$(&HAA)

1

6. "Medium" vertical lines

CHR$(&HCC)

I 1 1 I ~ I ~ 1 I 1 , I ~ I

Hex Decimal

~3 3

~c 12

3~ 48

c~ 192

Hex Decimal

c~ 192

3, 48

~c 12

~3 3

Hex Decimal

AA

Hex Decimal

cc 2i4

--------- ltadlOlhaeli---------

-158-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

7. "Coarse" vertical lines

CHR$(&HF,0)

8. One-pixel dots

CHR$(&H22)+CHR$(&H,0,0)

9. Two-pixel dots

CHR$(&H99)+CHR$(&H66)

lJ. Pluses ("+")

CHR$(&H3C)+CHR$(&H3C)+CHR$(&HFF)

' ' 1 1 1 1

.0 .0 1 1 1 1

1 1 1 1 1 1

.0 .0

.0 .0

1 1

Hex Decimal

F,0

Hex Decimal

22

.0,

34

.0

Hex Decimal

99

66

Hex Decimal

3C 6,0

3C 6,0

FF 255

---------- lladaelhaeli----------

-159-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

11. Solid {all pixels ON)

CHR$(&HFF)

1 I 1 1 1 11 1 1

12. "Broad" cross-hatch

CHR${&H92)+CHR$(&H92)+CHR$(&HFF)

1 ~ ~ 1 ~ ~

1 ~ ~ 1 ~ I

1 1 1 1 1 1

1 1

1 ~

1 ~

1 1

13. "Thick" cross-hatch

CHR${&HFF)+CHR${&HFF)+CHR${&HDB)+CHR$(&HDB)

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 ~ 1 1 ~ 1 1

1 1 ~ 1 1 ~ 1 1

Hex Decimal

FF 255

Hex Decimal

92 146

92 146

FF 255

Hex Decimal

FF 255

FF 255

DB 219

DB 219

----------lladlOlhaeli----------

-16~-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

14. "Fine" cross-hatch

CHR$(&H92)+CHR$(&HFF)

15. Alternating pixels

CHR$(&H55)+CHR$(&HAA)

Hex Decimal

92

FF

146

255

Hex Decimal

55

AA

85

17~

----------llad1elllaeli----------

-161-

Computer Graphics Operation Manual
-----------TRS-BO ® -----------

Appendix G/ Line Style Reference

===
Type Binar~r Numbers

Long dash Ill••••• 1111 1111

Short dash 1111 •••• 1111 ••••

"Short-short" dash 11•• 11•• 111• 11••

Solid line

OFF/ON

"Wide" dots

"Medium" dots

"Dot-dash"

1111 1111 1111 1111

,1,1 ,1,1 ,1,1 ,1,1

•••• 1,, ••••• 1••·
1••· 1, •• 1••· 1,,.

1••· 1111 1111 1••·

Hex Decimal

&H •• FF 255

&HFIF• -3856

&HCCCC -131.8

&HFFFF -1

&H5555 21845

&H•0•0 2•56

&H8888 -3,584

&H8FF8 -2868.
==

-----------na«11elhaell----------

-162-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

Absolute Coordinates
AND
Arc
Array

Array Limits
Array Name
ASCII
Aspect Ratio

BASIC
BASICG

BASICG Command
BASICG Error Messages
BASICG Functions
Binary Numbers

Cartesian System
CIRCLE

CLR
CLS
Communication Drivers
Current Coordinates

DEBUG
DO
Double-Precision

Ellipse

FORMS
FORTRAN

Free Memory
FVIEW

GCLS
GET

GLOAD

Index

54-56, 11.0
46, 48, 1.07, 117
16, 22
24-27, 46, 47, 54,
96-98, 1.07, 121
24, 25, 97, 98
24, 25, 46, 118, 119
12
16, 17, 2,0, 21, 95

5, 12, 24, 46, 93
8, 12, 14, 38, 44, 46,
91, 127, 133
13, 15
12,0-124
14, 15
31, 35-37, 162

9, 11, 54, 11,0
13, 16-23, 94, 95,
117, 125
13, 117
94, 117, 125
59
91, 92, 96, 1,09

59
59, 98, 1,08, 111
15

6, 2,0-23, 94, 117

62, 133
5, 59, 91-94, 99, 112,
135
12, 38, 93
94, 112, 125

6,0, 64, 117
13, 24-27, 46, 47, 54,
94, 96, 125
6,0, 61, 66, 118

---------- llad1elllaeli----------

-163-

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

GLOCATE
GPRINT

GPRT2
GPRT3
Graphics Board
GRAPHICS ERROR
Graphics Memory
Graphics Utilities
GROFF
GRON
GRPINI
GRPLIB/REL
GSAVE

Hard Disk
Hex Numbers

Initialization
Integer
INTEGER
Integer Range
I/O Port Mapping

LINE

LINE-CMD
Line Styles
LINEB
LINEB-CMD
LINEBF
LINEBF-CMD
Loading BASICG
LOCATE
LOGICAL

Notational Conventions
Numeric Expressions
Numeric Values

Options Programming
OR

PAINT

PAINT-CMD
PAINTT
PAINTT-CMD
Pie-Slice

13, 27, 28, 43, 118
6g, 62, 94, 98, 99,
118, 125
6g, 63, 118
6g, 63-64, 118
114, 115
93, 99
6g-62, 64, 66, 134
59-66
6g, 64, 118
6g, 65, 118
94, 99, 125
91, 92
6g, 66, 118

4
3g, 31, 37, 156, 162

92
15, 24, 25, 97
95, 96, 98, 1gg, 1g9-111
9, 17, 29, 3g, 1gg, 12g
114

13, 29-32, 91, 94, 118,
125
91, 1gg
29, 3~, 31, 162
91, 94, l~l, 125
91
91, 94, 1~1, 125
91
12, 14
94, 125
95-1~8, 11~-112

6
17, 34
15

116
46, 48, 1~7, 117

13, 33-4~, 54, 91, 94,
1~3, 118, 125
91
91, 94, 1~4, 125
91
16

---------- llad1elllaeli----------

-164-

·~

Computer Graphics Operation Manual
-----------TRS-BO ® ----------

Pixel

Pixel Area

POINT

PRESET

Previous Coordinates
PRINT #-3
Printers
PSET

PUT

Real
REAL
Relative Origin
Resolution

SCREEN

SCREEN-CMD
Screen Dump
SETXY

SETXYR

Single-Precision
Starting-Up
Strings
Subroutine Library

Text Screen

Video Display
VIEW

VIEW (command)
VIEW (function)

Viewport

XOR

7, 9, 31, 34, 35, 4~-45,
48, 94, 97, 1~5, 1~6,
112, 114, 156
24-27, 46-48, 51, 52,
96, 97, 1~7, 118
14, 4~, 41, 94, 112,
118, 126
13, 42, 43, 46, 48, 94,
115, 1~7, 117, 118, 126
91, 92, 96, 1~9
13, 43, 119
5
13, 44-46, 48, 51, 94,
1~6, 117, 119, 126
13, 24, 46-49, 51, 52,
94, 1~7, 119

25, 97
95
54, 11~
7, 8

13, 52, 53, 94, 1~8,
119, 126
15, 1~8
62
91, 92, 94, 96, l~~,
119, 126
91, 92, 94, 1~i, 1i9,
126
15, 16, 21, 117
14
34-36
8, 91, 92, 111, 125

9, 13, 15, 52, 53, 1~8,
114, 117

9, 114
13, 54-56, 94, 11i, 111,
119, 126
13, 54-56
14, 57, 58, 11i, 111,
119
13, 14, 54-58, 94, 11i,
112, 119

46, 1i1, 115, 117

----------llad1elhaeli----------

-165-

